The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, and The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel.
PLoS One. 2011 Mar 9;6(3):e17779. doi: 10.1371/journal.pone.0017779.
Neural activity can be affected by nitric oxide (NO) produced by spiking neurons. Can neural activity also be affected by NO produced in neurons in the absence of spiking?
METHODOLOGY/PRINCIPAL FINDINGS: Applying an NO scavenger to quiescent Aplysia buccal ganglia initiated fictive feeding, indicating that NO production at rest inhibits feeding. The inhibition is in part via effects on neurons B31/B32, neurons initiating food consumption. Applying NO scavengers or nitric oxide synthase (NOS) blockers to B31/B32 neurons cultured in isolation caused inactive neurons to depolarize and fire, indicating that B31/B32 produce NO tonically without action potentials, and tonic NO production contributes to the B31/B32 resting potentials. Guanylyl cyclase blockers also caused depolarization and firing, indicating that the cGMP second messenger cascade, presumably activated by the tonic presence of NO, contributes to the B31/B32 resting potential. Blocking NO while voltage-clamping revealed an inward leak current, indicating that NO prevents this current from depolarizing the neuron. Blocking nitrergic transmission had no effect on a number of other cultured, isolated neurons. However, treatment with NO blockers did excite cerebral ganglion neuron C-PR, a command-like neuron initiating food-finding behavior, both in situ, and when the neuron was cultured in isolation, indicating that this neuron also inhibits itself by producing NO at rest.
CONCLUSION/SIGNIFICANCE: Self-inhibitory, tonic NO production is a novel mechanism for the modulation of neural activity. Localization of this mechanism to critical neurons in different ganglia controlling different aspects of a behavior provides a mechanism by which a humeral signal affecting background NO production, such as the NO precursor L-arginine, could control multiple aspects of the behavior.
神经元活动会受到由放电神经元产生的一氧化氮(NO)的影响。那么,在没有放电的情况下,神经元产生的 NO 是否也会影响神经元活动呢?
方法/主要发现:向静止的海兔口腔神经节施加一氧化氮清除剂会引发假性摄食,这表明 NO 的产生在休息时会抑制摄食。这种抑制部分是通过对神经元 B31/B32 的影响实现的,神经元 B31/B32 启动食物消耗。将 NO 清除剂或一氧化氮合酶(NOS)阻断剂应用于单独培养的 B31/B32 神经元,会导致不活跃的神经元去极化并放电,这表明 B31/B32 神经元在没有动作电位的情况下持续产生 NO,而持续产生的 NO 有助于维持 B31/B32 神经元的静息电位。鸟苷酸环化酶阻断剂也会导致去极化和放电,这表明 cGMP 第二信使级联反应(可能由持续存在的 NO 激活)有助于维持 B31/B32 神经元的静息电位。在电压钳位的同时阻断 NO 会揭示出内向漏电流,这表明 NO 阻止该电流使神经元去极化。阻断氮能传递对许多其他培养的、孤立的神经元没有影响。然而,用 NO 阻断剂处理原位和单独培养的脑神经节神经元 C-PR 时,C-PR 神经元会被激活,C-PR 神经元是一种发出觅食行为命令的神经元,这表明该神经元也通过在休息时产生 NO 来自我抑制。
结论/意义:自抑制、持续的 NO 产生是调节神经元活动的一种新机制。将这种机制定位于控制行为不同方面的不同神经节中的关键神经元上,为影响背景 NO 产生的体液信号(如 NO 前体 L-精氨酸)控制行为的多个方面提供了一种机制。