Suppr超能文献

一维脉冲场凝胶电泳(ODPFGE)的弹性袋模型

Elastic Bag Model of One-Dimensional Pulsed-Field Gel Electrophoresis (ODPFGE).

作者信息

Noolandi J, Turmel C

机构信息

Xerox Research Centre of Canada, Mississauga, Ontario, Canada.

出版信息

Methods Mol Biol. 1992;12:451-67. doi: 10.1385/0-89603-229-9:451.

Abstract

Gel electrophoresis is one of the most common techniques used in molecular biology for the separation of DNA molecules. Conventional gel electrophoresis (using a static electric field) does not permit separation of DNA fragments larger than 30-50 kbp (1) as shown in Fig. 1A of Chapter 7 . This is a surprising result as one would think that larger molecules would suffer a larger retardation, and separation over any size range would be possible. The inability to separate is related to the molecular conformation of a polyelectrolyte, such as DNA, migrating in a disordered medium, such as a gel, under the influence of a static electric field. During continuous field electrophoresis, the larger DNA fragments tend to orient and stretch in the field direction because they migrate in a one-dimensional fashion between the gel fibers (2-4). When this orientation is negligible, e.g., for smaller molecules or for very low field intensities, they maintain a three-dimensional random-walk conformation intertwined with the gel fibers during migration, and experience a retardation that is proportional to the mol size. However, when the orientation becomes large, the molecules become stretched and migrate essentially linearly along the field direction (5). The electrophoretic mobility then becomes independent of the mol size and no separation of molecules of different sizes is possible (Fig. 1A of Chapter 7 ). Physically, this is a consequence of the fact that for long molecules stretched and oriented in the field direction, both the electrical force on the molecule and the average friction opposing the forward motion are proportional to the length. It follows that the velocity, which is the ratio of these two quantities, depends only on the force per unit length and is independent of the actual mol length. This explains why a plateau of length-independent mobility is reached in a continuous electric field (Fig. 2 of Chapter 7 ).

摘要

凝胶电泳是分子生物学中用于分离DNA分子的最常用技术之一。传统的凝胶电泳(使用静电场)无法分离大于30 - 50 kbp的DNA片段(1),如第7章图1A所示。这是一个令人惊讶的结果,因为人们会认为较大的分子会受到更大的阻滞,并且在任何大小范围内都有可能实现分离。无法分离与在静电场影响下在无序介质(如凝胶)中迁移的聚电解质(如DNA)的分子构象有关。在连续场电泳过程中,较大的DNA片段倾向于在电场方向上定向和伸展,因为它们在凝胶纤维之间以一维方式迁移(2 - 4)。当这种定向可以忽略不计时,例如对于较小的分子或非常低的场强,它们在迁移过程中保持与凝胶纤维交织的三维随机游走构象,并经历与摩尔大小成比例的阻滞。然而,当定向变得很大时,分子会被拉伸并基本上沿电场方向线性迁移(5)。然后电泳迁移率变得与摩尔大小无关,并且不同大小的分子无法分离(第7章图1A)。从物理角度来看,这是因为对于在电场方向上拉伸和定向的长分子,分子上的电力和阻碍向前运动的平均摩擦力都与长度成正比。因此,速度作为这两个量的比值,仅取决于单位长度上的力,而与实际的摩尔长度无关。这就解释了为什么在连续电场中会达到与长度无关的迁移率平台(第7章图2)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验