Suppr超能文献

多排螺旋CT血管造影分析肝动脉时后处理技术的比较

Comparison between postprocessing techniques in the analysis of hepatic arteries using multi-detector-row computed tomography angiography.

作者信息

Saba Luca, Sanfilippo Roberto, Anzidei Michele, Montisci Roberto, Pascalis Luigi, Mallarini Giorgio

机构信息

Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy.

出版信息

J Comput Assist Tomogr. 2011 Mar-Apr;35(2):174-80. doi: 10.1097/RCT.0b013e318201f3be.

Abstract

PURPOSE

Our purpose was to compare 4 different postprocessing techniques (maximum-intensity projection [MIP], multiplanar reconstruction, curved planar reconstruction, and volume rendering [VR]) for the study of hepatic arteries.

METHODS

One hundred thirty-seven patients who underwent multi-detector-row computed tomography angiography between August 2009 and January 2010 were retrospectively analyzed. For each patient and for each reconstruction method, the image quality was evaluated and the interobserver and intraobserver agreement was calculated according to Cohen statistics.

RESULTS

The Pearson r between the observers for the common hepatic artery measurement (Hounsfield unit) was good (r = 0.88). The VR showed a Cohen κ value of 0.78, and the highest image-quality score was obtained using MIP (total value, 384; mean value, 3.01) for observer 1 and using VR and MIP for observer 2 (mean value of 2.94).

CONCLUSIONS

Maximum-intensity projection and VR showed the optimal interobserver and intraobserver agreement and the highest quality scores and therefore should be used as postprocessing techniques when analyzing the hepatic arteries.

摘要

目的

我们的目的是比较4种不同的后处理技术(最大密度投影[MIP]、多平面重建、曲面平面重建和容积再现[VR])用于肝动脉研究的效果。

方法

回顾性分析2009年8月至2010年1月期间接受多排螺旋CT血管造影的137例患者。对每位患者的每种重建方法,评估图像质量,并根据科恩统计量计算观察者间和观察者内的一致性。

结果

观察者间对肝总动脉测量(亨氏单位)的皮尔逊r值良好(r = 0.88)。VR的科恩κ值为0.78,观察者1使用MIP获得的图像质量评分最高(总分值,384;平均值,3.01),观察者2使用VR和MIP获得的图像质量评分最高(平均值为2.94)。

结论

最大密度投影和VR显示出最佳的观察者间和观察者内一致性以及最高的质量评分,因此在分析肝动脉时应作为后处理技术使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验