Suppr超能文献

结合光镊和膜片钳技术研究细胞膜的机电学特性。

Combining optical tweezers and patch clamp for studies of cell membrane electromechanics.

作者信息

Qian Feng, Ermilov Sergey, Murdock David, Brownell William E, Anvari Bahman

机构信息

Department of Bioengineering, Rice University, Houston, Texas.

出版信息

Rev Sci Instrum. 2004 Sep;75(9):2937-2942. doi: 10.1063/1.1781382.

Abstract

We have designed and implemented a novel experimental setup which combines optical tweezers with patch-clamp apparatus to investigate the electromechanical properties of cellular plasma membranes. In this system, optical tweezers provide measurement of forces at piconewton scale, and the patch-clamp technique allows control of the cell transmembrane potential. A micron-size bead trapped by the optical tweezers is brought in contact with the membrane of a voltage-clamped cell, and subsequently moved away to form a plasma membrane tether. Bead displacement from the trapping center is monitored by a quadrant photodetector for dynamic measurements of tether force. Fluorescent beads and the corresponding fluorescence imaging optics are used to eliminate the shadow of the cell projected on the quadrant photodetector. Salient information associated with the mechanical properties of the membrane tether can thus be obtained. A unique feature of this setup is that the patch-clamp headstage and the manipulator for the recording pipette are mounted on a piezoelectric stage, preventing relative movements between the cell and the patch pipette during the process of tether pulling. Tethers can be pulled from the cell membrane at different holding potentials, and the tether force response can be measured while changing transmembrane potential. Experimental results from mammalian cochlear outer hair cells and human embryonic kidney cells are presented.

摘要

我们设计并实现了一种新颖的实验装置,该装置将光镊与膜片钳设备相结合,以研究细胞质膜的机电特性。在这个系统中,光镊可测量皮牛顿级别的力,而膜片钳技术则能控制细胞跨膜电位。被光镊捕获的微米级珠子与电压钳制细胞的膜接触,随后移开以形成质膜系链。象限光电探测器监测珠子相对于捕获中心的位移,用于动态测量系链力。使用荧光珠和相应的荧光成像光学器件来消除细胞投射在象限光电探测器上的阴影。由此可以获得与膜系链机械特性相关的重要信息。该装置的一个独特之处在于,膜片钳前置放大器和记录微管的操纵器安装在一个压电平台上,可防止在系链牵拉过程中细胞与膜片微管之间发生相对移动。可以在不同的钳制电位下从细胞膜牵拉系链,并在改变跨膜电位时测量系链力响应。文中给出了来自哺乳动物耳蜗外毛细胞和人胚肾细胞的实验结果。

相似文献

1
Combining optical tweezers and patch clamp for studies of cell membrane electromechanics.
Rev Sci Instrum. 2004 Sep;75(9):2937-2942. doi: 10.1063/1.1781382.
2
Membrane tether formation from outer hair cells with optical tweezers.
Biophys J. 2002 Mar;82(3):1386-95. doi: 10.1016/S0006-3495(02)75493-3.
3
Visco-elastic membrane tethers extracted from Escherichia coli by optical tweezers.
Biophys J. 2007 Dec 1;93(11):4068-75. doi: 10.1529/biophysj.107.103861. Epub 2007 Aug 17.
4
Cell membrane tethers generate mechanical force in response to electrical stimulation.
Biophys J. 2010 Aug 4;99(3):845-52. doi: 10.1016/j.bpj.2010.05.025.
6
Pulling of Tethers from the Cell Plasma Membrane Using Optical Tweezers.
Methods Mol Biol. 2020;2169:167-174. doi: 10.1007/978-1-0716-0732-9_15.
7
Modeling the mechanics of tethers pulled from the cochlear outer hair cell membrane.
J Biomech Eng. 2008 Jun;130(3):031007. doi: 10.1115/1.2907758.
8
Effects of cholesterol on nano-mechanical properties of the living cell plasma membrane.
Soft Matter. 2012;8(32):8350-8360. doi: 10.1039/C2SM25263E. Epub 2012 Jul 3.
9
Electrophysiology in the eukaryotic model cell Saccharomyces cerevisiae.
Pflugers Arch. 1998 Nov;436(6):999-1013. doi: 10.1007/s004240050735.

引用本文的文献

1
Micropipette-based biomechanical nanotools on living cells.
Eur Biophys J. 2022 Mar;51(2):119-133. doi: 10.1007/s00249-021-01587-5. Epub 2022 Feb 16.
2
On the Coupling between Mechanical Properties and Electrostatics in Biological Membranes.
Membranes (Basel). 2021 Jun 28;11(7):478. doi: 10.3390/membranes11070478.
4
Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics.
PLoS One. 2013;8(2):e57147. doi: 10.1371/journal.pone.0057147. Epub 2013 Feb 22.
6
Measuring forces at the leading edge: a force assay for cell motility.
Integr Biol (Camb). 2013 Jan;5(1):204-14. doi: 10.1039/c2ib20097j.
7
Cell membrane tethers generate mechanical force in response to electrical stimulation.
Biophys J. 2010 Aug 4;99(3):845-52. doi: 10.1016/j.bpj.2010.05.025.
8
Membrane Electromechanics in Biology, with a Focus on Hearing.
MRS Bull. 2009 Sep 1;34(9):665. doi: 10.1557/mrs2009.178.
9
Analysis of nematode mechanics by piezoresistive displacement clamp.
Proc Natl Acad Sci U S A. 2007 Oct 30;104(44):17376-81. doi: 10.1073/pnas.0702138104. Epub 2007 Oct 25.
10
Effect of temperature on tether extraction, surface protrusion, and cortical tension of human neutrophils.
Biophys J. 2007 Oct 15;93(8):2923-33. doi: 10.1529/biophysj.107.105346. Epub 2007 Jun 22.

本文引用的文献

1
Calibration of light forces in optical tweezers.
Appl Opt. 1995 Feb 20;34(6):977-82. doi: 10.1364/AO.34.000977.
2
Observation of a single-beam gradient force optical trap for dielectric particles.
Opt Lett. 1986 May 1;11(5):288. doi: 10.1364/ol.11.000288.
4
Membrane tether formation from outer hair cells with optical tweezers.
Biophys J. 2002 Mar;82(3):1386-95. doi: 10.1016/S0006-3495(02)75493-3.
5
Voltage-induced membrane movement.
Nature. 2001 Sep 27;413(6854):428-32. doi: 10.1038/35096578.
6
Micro- and nanomechanics of the cochlear outer hair cell.
Annu Rev Biomed Eng. 2001;3:169-94. doi: 10.1146/annurev.bioeng.3.1.169.
7
Reciprocal electromechanical properties of rat prestin: the motor molecule from rat outer hair cells.
Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):4178-83. doi: 10.1073/pnas.071613498.
8
An integrated laser trap/flow control video microscope for the study of single biomolecules.
Biophys J. 2000 Aug;79(2):1155-67. doi: 10.1016/S0006-3495(00)76369-7.
9
A membrane bending model of outer hair cell electromotility.
Biophys J. 2000 Jun;78(6):2844-62. doi: 10.1016/S0006-3495(00)76827-5.
10
Prestin is the motor protein of cochlear outer hair cells.
Nature. 2000 May 11;405(6783):149-55. doi: 10.1038/35012009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验