Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
J Neurosci. 2011 Feb 23;31(8):2868-77. doi: 10.1523/JNEUROSCI.3410-10.2011.
Although alterations in glial structure and function commonly accompany death of neurons in neurodegenerative diseases, the role glia play in modulating neuronal loss is poorly understood. We have created a model of Alexander disease in Drosophila by expressing disease-linked mutant versions of glial fibrillary acidic protein (GFAP) in fly glia. We find aggregation of mutant human GFAP into inclusions bearing the hallmarks of authentic Rosenthal fibers. We also observe significant toxicity of mutant human GFAP to glia, which is mediated by protein aggregation and oxidative stress. Both protein aggregation and oxidative stress contribute to activation of a robust autophagic response in glia. Toxicity of mutant GFAP to glial cells induces a non-cell-autonomous stress response and subsequent apoptosis in neurons, which is dependent on glial glutamate transport. Our findings thus establish a simple genetic model of Alexander disease and further identify cellular pathways critical for glial-induced neurodegeneration.
尽管神经退行性疾病中神经细胞死亡常伴有神经胶质结构和功能的改变,但胶质细胞在调节神经元丢失中的作用仍不清楚。我们通过在果蝇的神经胶质细胞中表达与疾病相关的突变型神经胶质纤维酸性蛋白 (GFAP),创建了一种果蝇亚历山大病模型。我们发现突变型人 GFAP 聚集形成具有真正 Rosenthal 纤维特征的包涵体。我们还观察到突变型人 GFAP 对神经胶质细胞有明显的毒性,这种毒性是由蛋白质聚集和氧化应激介导的。蛋白质聚集和氧化应激都导致神经胶质细胞中强烈的自噬反应被激活。突变型 GFAP 对神经胶质细胞的毒性诱导神经元中非细胞自主应激反应和随后的细胞凋亡,这依赖于神经胶质细胞的谷氨酸转运。因此,我们的发现建立了一个简单的亚历山大病遗传模型,并进一步确定了胶质细胞诱导神经退行性变的关键细胞途径。