Department of Molecular Biology, Medical School, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
J Phys Chem A. 2011 Apr 14;115(14):3022-8. doi: 10.1021/jp201796q. Epub 2011 Mar 22.
The pharmacological effects of hydroxamate derivatives have been attributed not only to metal chelation or enzyme inhibition but also to their ability to serve as nitroxyl (HNO/NO(-)) and nitric oxide (NO) donors. However, the mechanism underlying the formation of these reactive nitrogen species is not clear and requires further elucidation. In the present study, one-electron oxidation of acetohydroxamic acid (aceto-HX) by (•)OH, (•)N(3), (•)NO(2), CO(3)(•-), and O(2)(•-) radicals was investigated using pulse radiolysis. It is demonstrated that only (•)OH, (•)N(3), and CO(3)(•-) radicals attack effectively and selectively the deprotonated form of the hydroxamate moiety, yielding the respective transient nitroxide radical. This nitroxide radical is a weak acid (CH(3)C(O)NHO(•), pK(a) = 9.1), which decays via a pH-dependent second-order reaction, 2k(2CH(3)C(O)NO(•-)) = (5.6 ± 0.4) × 10(7) M(-1) s(-1) (I = 0.002 M), 2k(CH(3)C(O)NO(•-) + CH(3)C(O)NHO(•)) = (8.3 ± 0.5) × 10(8) M(-1) s(-1)), and 2k(2CH(3)C(O)NHO(•)) = (8.7 ± 1.3) × 10(7) M(-1) s(-1). The second-order decomposition of the nitroxide yields transient species, one of which decomposes via a first-order reaction whose rate increases linearly upon increasing [CH(3)C(O)NHO(-)] or [OH(-)]. One-electron oxidation of aceto-HX under anoxia does not give rise to nitrite even after exposure to O(2), indicating that NO is not formed during the decomposition of the nitroxide radical. The presence of oxidants such as Tempol or O(2) during CH(3)C(O)NO(•-) decomposition had no effect on the reaction kinetics. Nevertheless, in the presence of Temopl, which does not react with NO but does with HNO, the formation of the hydroxylamine Tempol-H was observed. In the presence of O(2), about 60% of CH(3)C(O)NO(•-) yields ONOO(-), indicating that 30% NO(-) is formed in this system. It is concluded that under pulse radiolysis conditions, the transient nitroxide radicals derived from one-electron oxidation of aceto-HX decompose bimoleculary via a complex mechanism forming nitroxyl rather than NO.
羟胺衍生物的药理学效应不仅归因于金属螯合或酶抑制,还归因于它们作为亚硝酰基(HNO/NO(-))和一氧化氮(NO)供体的能力。然而,形成这些反应性氮物种的机制尚不清楚,需要进一步阐明。在本研究中,使用脉冲辐射法研究了一电子氧化乙二酰羟胺(aceto-HX)生成(•)OH、(•)N(3)、(•)NO(2)、CO(3)(•-)和 O(2)(•-)自由基的情况。结果表明,只有(•)OH、(•)N(3)和 CO(3)(•-)自由基能有效地选择性攻击羟胺部分的去质子形式,生成相应的瞬态氮氧自由基。该氮氧自由基是一种弱酸(CH(3)C(O)NHO(•),pK(a) = 9.1),通过 pH 依赖的二级反应进行衰减,2k(2CH(3)C(O)NO(•-)) = (5.6 ± 0.4) × 10(7) M(-1) s(-1)(I = 0.002 M),2k(CH(3)C(O)NO(•-) + CH(3)C(O)NHO(•)) = (8.3 ± 0.5) × 10(8) M(-1) s(-1)),和 2k(2CH(3)C(O)NHO(•)) = (8.7 ± 1.3) × 10(7) M(-1) s(-1)。氮氧自由基的二级分解生成瞬态物质,其中一种通过一级反应分解,其速率随[CH(3)C(O)NHO(-)]或[OH(-)]的增加而线性增加。缺氧条件下乙二酰羟胺的一电子氧化甚至在暴露于 O(2)后也不会产生亚硝酸盐,表明在氮氧自由基分解过程中不形成 NO。在 Tempol 或 O(2)等氧化剂存在下,CH(3)C(O)NO(•-)分解的反应动力学没有影响。然而,在不与 NO 反应但与 HNO 反应的 Temopl 存在下,观察到羟基胺 Tempol-H 的形成。在 O(2)存在下,约 60%的 CH(3)C(O)NO(•-)生成 ONOO(-),表明在该体系中形成 30%的 NO(-)。结论是,在脉冲辐射条件下,乙二酰羟胺的一电子氧化生成的瞬态氮氧自由基通过复杂的机制双分子分解,形成亚硝酰基而不是 NO。