Suppr超能文献

yasMiR 系统识别 miRNA:寻求进一步的改进。

MiRNA recognition with the yasMiR system: the quest for further improvements.

机构信息

Department of Computer Science, Alexandru Ioan Cuza University of Lasi, Lasi, Romania.

出版信息

Adv Exp Med Biol. 2011;696:17-25. doi: 10.1007/978-1-4419-7046-6_2.

Abstract

The paper "Using Base Pairing Probabilities for MiRNA Recognition" by Daniel Pasailă, Irina Mohorianu, and Liviu Ciortuz, that has been published in Proceedings of the International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC) 2008, IEEE Computer Society, pp. 519-525, has introduced a new SVM for microRNA identification, whose novelty is twofolded: first, many of its features incorporate the base-pairing probabilities provided by McCaskill's algorithm, and second the classification performance is improved using a certain similarity ("profile"-based) measure between the training and test microRNAs and a set of carefully chosen ("pivot") RNA sequences. Comparisons with some of the best existing SVMs for microRNA identification proved that our SVM obtains truly competitive results. Here we add several significant extensions to the work reported in Daniel Pasailă et al. Proceedings of the International (SYNASC) 2008, pp. 519-525: testing this classifier on a more recent version of miRBase (12.0), evaluating the effect of using probabilistic patterns instead of non-probabilistic ones, analysing the discriminative power of different categories of features we used, and automatically searching for good pivot RNA sequences, which are critical for classification in our approach.

摘要

这篇论文“使用碱基配对概率进行 miRNA 识别”由 DanielPasailă、IrinaMohorianu 和 LiviuCiortuz 撰写,发表在 2008 年国际符号和数值算法科学计算研讨会(SYNASC)的会议录中,IEEE 计算机协会,第 519-525 页,提出了一种新的 SVM 用于 microRNA 识别,其新颖之处在于两个方面:首先,它的许多特征都包含了 McCaskill 算法提供的碱基配对概率,其次,使用训练和测试 microRNA 之间的某种相似性(“基于特征”)度量和一组精心选择的(“枢轴”)RNA 序列来提高分类性能。与一些现有的 microRNA 识别最佳 SVM 的比较证明,我们的 SVM 获得了真正有竞争力的结果。在这里,我们对 DanielPasailă 等人在国际(SYNASC)2008 年的会议录中的工作进行了几个重要的扩展:在更现代的 miRBase 版本(12.0)上测试这个分类器,评估使用概率模式而不是非概率模式的效果,分析我们使用的不同类别特征的判别能力,以及自动搜索对分类至关重要的好的枢轴 RNA 序列。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验