National Institute for Astrophysics, Optics, and Electronics, Luis Enrique Erro No. 1, Puebla, Mexico, 72840.
Adv Exp Med Biol. 2011;696:345-53. doi: 10.1007/978-1-4419-7046-6_35.
The segmentation of leukocytes and their components plays an important role in the extraction of geometric, texture, and morphological characteristics used to diagnose different diseases. This paper presents a novel method to segment leukocytes and their respective nucleus and cytoplasm from microscopic bone marrow leukemia cell images. Our method uses color and texture contextual information of image pixels to extract cellular elements from images, which show heterogeneous color and texture staining and high-cell population. The CIEL ( ∗ ) a ( ∗ ) b ( ∗ ) color space is used to extract color features, whereas a 2D Wold Decomposition model is applied to extract structural and stochastic texture features. The color and texture contextual information is incorporated into an unsupervised binary Markov Random Field segmentation model. Experimental results show the performance of the proposed method on both synthetic and real leukemia cell images. An average accuracy of 95% was achieved in the segmentation of real cell images by comparing those results with manually segmented cell images.
白细胞及其成分的分割在提取用于诊断不同疾病的几何、纹理和形态特征方面起着重要作用。本文提出了一种从微观骨髓白血病细胞图像中分割白细胞及其各自的细胞核和细胞质的新方法。我们的方法使用图像像素的颜色和纹理上下文信息从图像中提取细胞元素,这些元素显示出不均匀的颜色和纹理染色以及高细胞群体。CIEL(∗)a(∗)b(∗)颜色空间用于提取颜色特征,而二维 Wold 分解模型则用于提取结构和随机纹理特征。颜色和纹理上下文信息被合并到一个无监督的二值马尔可夫随机场分割模型中。实验结果表明,该方法在合成和真实白血病细胞图像上的性能。通过将这些结果与手动分割的细胞图像进行比较,在真实细胞图像的分割中实现了平均 95%的准确率。