Department of Computer Science, University of Missouri-Columbia, Columbia, MO 65211, USA.
Adv Exp Med Biol. 2011;696:413-24. doi: 10.1007/978-1-4419-7046-6_41.
High resolution, multispectral, and multimodal imagery of tissue biopsies is an indispensable source of information for diagnosis and prognosis of diseases. Automatic extraction of relevant features from these imagery is a valuable assistance for medical experts. A primary step in computational histology is accurate image segmentation to detect the number and spatial distribution of cell nuclei in the tissue, along with segmenting other structures such as lumen and epithelial regions which together make up a gland structure. This chapter presents an automatic segmentation system for histopathology imaging. Spatial constraint fuzzy C-means provides an unsupervised initialization. An active contour algorithm that combines multispectral edge and region informations through a vector multiphase level set framework and Beltrami color metric tensors refines the segmentation. An improved iterative kernel filtering approach detects individual nuclei centers and decomposes densely clustered nuclei structures. The obtained results show high performances for nuclei detection compared to the human annotation.
组织活检的高分辨率、多光谱和多模态成像是疾病诊断和预后不可或缺的信息来源。从这些图像中自动提取相关特征是医学专家的宝贵辅助。计算组织学的一个主要步骤是准确的图像分割,以检测组织中细胞核的数量和空间分布,并分割其他结构,如腔和上皮区域,这些结构共同构成了一个腺体结构。本章介绍了一种用于组织病理学成像的自动分割系统。空间约束模糊 C 均值提供了无监督初始化。一种主动轮廓算法通过向量多相水平集框架和 Beltrami 颜色度量张量结合多光谱边缘和区域信息进行细化分割。一种改进的迭代核滤波方法检测单个核中心并分解密集聚集的核结构。与人工注释相比,所得到的核检测结果显示出较高的性能。