Suppr超能文献

使用Helicos遗传分析系统进行RNA测序和定量分析。

RNA sequencing and quantitation using the Helicos Genetic Analysis System.

作者信息

Raz Tal, Causey Marie, Jones Daniel R, Kieu Alix, Letovsky Stan, Lipson Doron, Thayer Edward, Thompson John F, Milos Patrice M

机构信息

Helicos BioSciences Corporation, Cambridge, MA, USA.

出版信息

Methods Mol Biol. 2011;733:37-49. doi: 10.1007/978-1-61779-089-8_3.

Abstract

The recent transition in gene expression analysis technology to ultra high-throughput cDNA sequencing provides a means for higher quantitation sensitivity across a wider dynamic range than previously possible. Sensitivity of detection is mostly a function of the sheer number of sequence reads generated. Typically, RNA is converted to cDNA using random hexamers and the cDNA is subsequently sequenced (RNA-Seq). With this approach, higher read numbers are generated for long transcripts as compared to short ones. This length bias necessitates the generation of very high read numbers to achieve sensitive quantitation of short, low-expressed genes. To eliminate this length bias, we have developed an ultra high-throughput sequencing approach where only a single read is generated for each transcript molecule (single-molecule sequencing Digital Gene Expression (smsDGE)). So, for example, equivalent quantitation accuracy of the yeast transcriptome can be achieved by smsDGE using only 25% of the reads that would be required using RNA-Seq. For sample preparation, RNA is first reverse-transcribed into single-stranded cDNA using oligo-dT as a primer. A poly-A tail is then added to the 3' ends of cDNA to facilitate the hybridization of the sample to the Helicos(®) single-molecule sequencing Flow-Cell to which a poly dT oligo serves as the substrate for subsequent sequencing by synthesis. No PCR, sample-size selection, or ligation steps are required, thus avoiding possible biases that may be introduced by such manipulations. Each tailed cDNA sample is injected into one of 50 flow-cell channels and sequenced on the Helicos(®) Genetic Analysis System. Thus, 50 samples are sequenced simultaneously generating 10-20 million sequence reads on average for each sample channel. The sequence reads can then be aligned to the reference of choice such as the transcriptome, for quantitation of known transcripts, or the genome for novel transcript discovery. This chapter provides a summary of the methods required for smsDGE.

摘要

基因表达分析技术最近向超高通量cDNA测序的转变,提供了一种在比以前更宽的动态范围内实现更高定量灵敏度的方法。检测灵敏度主要取决于所产生的序列读数的绝对数量。通常,使用随机六聚体将RNA转化为cDNA,随后对cDNA进行测序(RNA测序)。采用这种方法,与短转录本相比,长转录本会产生更高的读数。这种长度偏差使得需要产生非常高的读数数量,才能实现对短的、低表达基因的灵敏定量。为了消除这种长度偏差,我们开发了一种超高通量测序方法,其中每个转录本分子只产生一个读数(单分子测序数字基因表达(smsDGE))。例如,通过smsDGE,仅使用RNA测序所需读数的25%,就能实现酵母转录组的等效定量准确性。对于样品制备,首先使用寡聚dT作为引物将RNA逆转录为单链cDNA。然后在cDNA的3'末端添加一个聚A尾巴,以促进样品与Helicos(®)单分子测序流动池杂交,该流动池以聚dT寡聚物作为后续合成测序的底物。不需要PCR、样品大小选择或连接步骤,从而避免了此类操作可能引入的偏差。每个带尾的cDNA样品被注入50个流动池通道中的一个,并在Helicos(®)遗传分析系统上进行测序。因此,50个样品同时进行测序,每个样品通道平均产生1000万至2000万个序列读数。然后可以将序列读数与所选的参考序列(如转录组用于已知转录本的定量,或基因组用于新转录本的发现)进行比对。本章总结了smsDGE所需的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验