Suppr超能文献

利用近期感染检测对监测数据进行 HIV 发病率估计时,采用自举法进行置信区间估计和偏差校正。

Bootstrap confidence intervals and bias correction in the estimation of HIV incidence from surveillance data with testing for recent infection.

机构信息

Department of Humanities and the Social Sciences in the Professions, New York University, New York, USA.

出版信息

Stat Med. 2011 Apr 15;30(8):854-65. doi: 10.1002/sim.4134. Epub 2010 Dec 2.

Abstract

The incidence of new infections is a key measure of the status of the HIV epidemic, but accurate measurement of incidence is often constrained by limited data. Karon et al. (Statist. Med. 2008; 27:4617–4633) developed a model to estimate the incidence of HIV infection from surveillance data with biologic testing for recent infection for newly diagnosed cases. This method has been implemented by public health departments across the United States and is behind the new national incidence estimates, which are about 40 per cent higher than previous estimates. We show that the delta method approximation given for the variance of the estimator is incomplete, leading to an inflated variance estimate. This contributes to the generation of overly conservative confidence intervals, potentially obscuring important differences between populations. We demonstrate via simulation that an innovative model-based bootstrap method using the specified model for the infection and surveillance process improves confidence interval coverage and adjusts for the bias in the point estimate. Confidence interval coverage is about 94–97 per cent after correction, compared with 96–99 per cent before. The simulated bias in the estimate of incidence ranges from −6.3 to +14.6 per cent under the original model but is consistently under 1 per cent after correction by the model-based bootstrap. In an application to data from King County, Washington in 2007 we observe correction of 7.2 per cent relative bias in the incidence estimate and a 66 per cent reduction in the width of the 95 per cent confidence interval using this method. We provide open-source software to implement the method that can also be extended for alternate models.

摘要

新感染病例的发生率是衡量 HIV 疫情状况的一个关键指标,但由于数据有限,发病率的准确衡量往往受到限制。Karon 等人(Statist. Med. 2008; 27:4617–4633)开发了一种模型,该模型可以利用针对新诊断病例的近期感染进行生物检测的监测数据来估计 HIV 感染的发生率。该方法已被美国各地的公共卫生部门实施,是新的全国发病率估计数的基础,新的估计数比以前的估计数高出约 40%。我们发现,给出的估计量方差的 delta 方法逼近是不完整的,导致方差估计值膨胀。这会导致置信区间生成过于保守,潜在地掩盖了人群之间的重要差异。我们通过模拟证明,使用指定的感染和监测过程模型的创新基于模型的自举方法可以改善置信区间覆盖范围,并调整点估计的偏差。校正后,置信区间的覆盖范围约为 94-97%,而校正前为 96-99%。在原始模型下,估计发病率的偏差范围在−6.3%至+14.6%之间,但通过基于模型的自举校正后,偏差始终保持在 1%以下。在对 2007 年华盛顿金县的数据进行应用时,我们观察到使用该方法校正发病率估计的相对偏差为 7.2%,95%置信区间的宽度缩小了 66%。我们提供了可实现该方法的开源软件,该方法也可以扩展到其他模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验