Suppr超能文献

聚(2-羟乙基甲基丙烯酸酯)用于酶固定化:对辣根过氧化物酶活性和稳定性的影响。

Poly(2-hydroxyethyl methacrylate) for enzyme immobilization: impact on activity and stability of horseradish peroxidase.

机构信息

Air Force Research Laboratory, Materials and Manufactoring Directorate, Wright-Patterson AFB, Ohio 45433-7750, United States.

出版信息

Biomacromolecules. 2011 May 9;12(5):1822-30. doi: 10.1021/bm200173y. Epub 2011 Apr 15.

Abstract

On the basis of their versatile structure and chemistry as well as tunable mechanical properties, polymer brushes are well-suited as supports for enzyme immobilization. However, a robust surface design is hindered by an inadequate understanding of the impact on activity from the coupling motif and enzyme distribution within the brush. Herein, horseradish peroxidase C (HRP C, 44 kDa), chosen as a model enzyme, was immobilized covalently through its lysine residues on a N-hydroxysuccinimidyl carbonate-activated poly(2-hydroxyethyl methacrylate) (PHEMA) brush grafted chemically onto a flat impenetrable surface. Up to a monolayer coverage of HRP C is achieved, where most of the HRP C resides at or near the brush-air interface. Molecular modeling shows that lysines 232 and 241 are the most probable binding sites, leading to an orientation of the immobilized HRP C that does not block the active pocket of the enzyme. Michaelis-Menten kinetics of the immobilized HRP C indicated little change in the K(m) (Michaelis constant) but a large decrease in the V(max) (maximum substrate conversion rate) and a correspondingly large decrease in the k(cat) (overall catalytic rate). This indicates a loss in the percentage of active enzymes. Given the relatively ideal geometry of the HRPC-PHEMA brush, the loss of activity is most likely due to structural changes in the enzyme arising from either secondary constraints imposed by the connectivity of the N-hydroxysuccinimidyl carbonate linking moiety or nonspecific interactions between HRP C and DSC-PHEMA. Therefore, a general enzyme-brush coupling motif must optimize reactive group density to balance binding with neutrality of surroundings.

摘要

基于其多功能的结构和化学性质以及可调的机械性能,聚合物刷非常适合作为酶固定化的支撑物。然而,由于对连接基序和酶在刷内分布对活性的影响缺乏充分的了解,因此稳健的表面设计受到阻碍。在此,选择辣根过氧化物酶 C(HRP C,44 kDa)作为模型酶,通过其赖氨酸残基通过 N-羟基琥珀酰亚胺碳酸酯活化的聚(2-羟乙基甲基丙烯酸酯)(PHEMA)刷共价固定在化学接枝到不可渗透的平面上。达到 HRP C 的单层覆盖率,其中大部分 HRP C 位于或靠近刷-空气界面。分子模拟表明,赖氨酸 232 和 241 是最可能的结合位点,导致固定化 HRP C 的取向不会阻止酶的活性口袋。固定化 HRP C 的 Michaelis-Menten 动力学表明 K m(米氏常数)变化不大,但 V max(最大底物转化速率)和相应的 k cat(总催化速率)大幅下降。这表明活性酶的百分比降低。考虑到 HRPC-PHEMA 刷的相对理想的几何形状,活性的丧失很可能是由于酶的结构变化引起的,这些结构变化要么是由 N-羟基琥珀酰亚胺碳酸酯连接基序的连接性产生的二级约束引起的,要么是 HRP C 和 DSC-PHEMA 之间的非特异性相互作用引起的。因此,一般的酶刷偶联基序必须优化反应基团密度,以平衡结合与周围环境的中性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验