Suppr超能文献

缺乏原纤维蛋白-1 或原纤维蛋白-2 微纤维的骨骼的材料和机械性能。

Material and mechanical properties of bones deficient for fibrillin-1 or fibrillin-2 microfibrils.

机构信息

Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, NY 10029, USA.

出版信息

Matrix Biol. 2011 Apr;30(3):188-94. doi: 10.1016/j.matbio.2011.03.004. Epub 2011 Mar 29.

Abstract

The contribution of non-collagenous components of the extracellular matrix to bone strength is largely undefined. Here we report that deficiency of fibrillin-1 or fibrillin-2 microfibrils causes distinct changes in bone material and mechanical properties. Morphometric examination of mice with hypomorphic or null mutations in fibrillin-1 or fibrillin-2, respectively, revealed appreciable differences in the postnatal shaping and growth of long bones. Fourier transform infrared imaging spectroscopy indicated that fibrillin-1 plays a predominantly greater role than fibrillin-2 in determining the material properties of bones. Biomechanical tests demonstrated that fibrillin-2 exerts a greater positive influence on the mechanical properties of bone than fibrillin-1 assemblies. Published evidence indirectly supports the notion that the above findings are mostly, if not exclusively, related to the differential control of TGFβ family signaling by fibrillin proteins. Our study therefore advances our understanding of the role that extracellular microfibrils play in bone physiology and implicitly, in the pathogenesis of bone loss in human diseases caused by mutations in fibrillin-1 or -2.

摘要

细胞外基质中非胶原蛋白成分对骨强度的贡献在很大程度上尚未确定。在这里,我们报告称,原纤维蛋白-1 或原纤维蛋白-2 微纤维的缺乏会导致骨材料和机械性能的明显变化。对分别具有原纤维蛋白-1 或原纤维蛋白-2 低功能或缺失突变的小鼠进行形态计量学检查,发现长骨在出生后的塑造和生长方面存在明显差异。傅里叶变换红外成像光谱表明,原纤维蛋白-1 比原纤维蛋白-2 在决定骨骼材料特性方面发挥更大的作用。生物力学测试表明,原纤维蛋白-2 对骨骼机械性能的积极影响大于原纤维蛋白-1 组装体。已发表的证据间接支持这样一种观点,即上述发现主要(如果不是完全的话)与 TGFβ 家族信号转导的原纤维蛋白的差异控制有关。因此,我们的研究增进了对细胞外微纤维在骨骼生理学中的作用的理解,并且隐含地,在由原纤维蛋白-1 或 -2 突变引起的人类疾病中的骨丢失的发病机制中。

相似文献

1
Material and mechanical properties of bones deficient for fibrillin-1 or fibrillin-2 microfibrils.
Matrix Biol. 2011 Apr;30(3):188-94. doi: 10.1016/j.matbio.2011.03.004. Epub 2011 Mar 29.
3
Fibrillins: from biogenesis of microfibrils to signaling functions.
Curr Top Dev Biol. 2006;75:93-123. doi: 10.1016/S0070-2153(06)75004-9.
4
Extracellular microfibrils control osteoblast-supported osteoclastogenesis by restricting TGF{beta} stimulation of RANKL production.
J Biol Chem. 2010 Oct 29;285(44):34126-33. doi: 10.1074/jbc.M110.125328. Epub 2010 Aug 21.
5
Fibrillin-rich microfibrils: Structural determinants of morphogenetic and homeostatic events.
J Cell Physiol. 2007 Nov;213(2):326-30. doi: 10.1002/jcp.21189.
6
Microfibril structure masks fibrillin-2 in postnatal tissues.
J Biol Chem. 2010 Jun 25;285(26):20242-51. doi: 10.1074/jbc.M109.087031. Epub 2010 Apr 19.
7
Developmental expression of fibrillin genes suggests heterogeneity of extracellular microfibrils.
J Cell Biol. 1995 May;129(4):1165-76. doi: 10.1083/jcb.129.4.1165.
8
[Elastin and microfibrils in vascular development and ageing: complementary or opposite roles?].
Biol Aujourdhui. 2012;206(2):87-102. doi: 10.1051/jbio/2012009. Epub 2012 Jul 4.

引用本文的文献

1
Tissue material properties, whole-bone morphology and mechanical behavior in the mouse model of Marfan syndrome.
Matrix Biol Plus. 2024 Jun 15;23:100155. doi: 10.1016/j.mbplus.2024.100155. eCollection 2024 Aug.
2
The CMS19 disease model specifies a pivotal role for collagen XIII in bone homeostasis.
Sci Rep. 2022 Apr 7;12(1):5866. doi: 10.1038/s41598-022-09653-4.
4
Control of Bone Matrix Properties by Osteocytes.
Front Endocrinol (Lausanne). 2021 Jan 18;11:578477. doi: 10.3389/fendo.2020.578477. eCollection 2020.
5
Osterix regulates corticalization for longitudinal bone growth via integrin β3 expression.
Exp Mol Med. 2018 Jul 18;50(7):1-11. doi: 10.1038/s12276-018-0119-9.
6
TGF-β Signaling in Control of Cardiovascular Function.
Cold Spring Harb Perspect Biol. 2018 Feb 1;10(2):a022210. doi: 10.1101/cshperspect.a022210.
7
Multigenic Delineation of Lower Jaw Deformity in Triploid Atlantic Salmon (Salmo salar L.).
PLoS One. 2016 Dec 15;11(12):e0168454. doi: 10.1371/journal.pone.0168454. eCollection 2016.
8
Fibrillin microfibrils in bone physiology.
Matrix Biol. 2016 May-Jul;52-54:191-197. doi: 10.1016/j.matbio.2015.09.004. Epub 2015 Sep 25.
9
Fibrillin-1 Regulates Skeletal Stem Cell Differentiation by Modulating TGFβ Activity Within the Marrow Niche.
J Bone Miner Res. 2016 Jan;31(1):86-97. doi: 10.1002/jbmr.2598. Epub 2015 Aug 17.
10
Do Non-collagenous Proteins Affect Skeletal Mechanical Properties?
Calcif Tissue Int. 2015 Sep;97(3):281-91. doi: 10.1007/s00223-015-0016-3. Epub 2015 Jun 6.

本文引用的文献

1
3
Extracellular microfibrils control osteoblast-supported osteoclastogenesis by restricting TGF{beta} stimulation of RANKL production.
J Biol Chem. 2010 Oct 29;285(44):34126-33. doi: 10.1074/jbc.M110.125328. Epub 2010 Aug 21.
4
Microfibril-associated glycoprotein-1, an extracellular matrix regulator of bone remodeling.
J Biol Chem. 2010 Jul 30;285(31):23858-67. doi: 10.1074/jbc.M110.113019. Epub 2010 May 25.
5
Osteopontin deficiency increases bone fragility but preserves bone mass.
Bone. 2010 Jun;46(6):1564-73. doi: 10.1016/j.bone.2010.02.014. Epub 2010 Feb 18.
6
Extracellular microfibrils: contextual platforms for TGFbeta and BMP signaling.
Curr Opin Cell Biol. 2009 Oct;21(5):616-22. doi: 10.1016/j.ceb.2009.05.005. Epub 2009 Jun 12.
7
9
Decorin modulates collagen matrix assembly and mineralization.
Matrix Biol. 2009 Jan;28(1):44-52. doi: 10.1016/j.matbio.2008.11.003. Epub 2008 Nov 18.
10
Targeting of bone morphogenetic protein growth factor complexes to fibrillin.
J Biol Chem. 2008 May 16;283(20):13874-88. doi: 10.1074/jbc.M707820200. Epub 2008 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验