Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, NY 10029, USA.
Matrix Biol. 2011 Apr;30(3):188-94. doi: 10.1016/j.matbio.2011.03.004. Epub 2011 Mar 29.
The contribution of non-collagenous components of the extracellular matrix to bone strength is largely undefined. Here we report that deficiency of fibrillin-1 or fibrillin-2 microfibrils causes distinct changes in bone material and mechanical properties. Morphometric examination of mice with hypomorphic or null mutations in fibrillin-1 or fibrillin-2, respectively, revealed appreciable differences in the postnatal shaping and growth of long bones. Fourier transform infrared imaging spectroscopy indicated that fibrillin-1 plays a predominantly greater role than fibrillin-2 in determining the material properties of bones. Biomechanical tests demonstrated that fibrillin-2 exerts a greater positive influence on the mechanical properties of bone than fibrillin-1 assemblies. Published evidence indirectly supports the notion that the above findings are mostly, if not exclusively, related to the differential control of TGFβ family signaling by fibrillin proteins. Our study therefore advances our understanding of the role that extracellular microfibrils play in bone physiology and implicitly, in the pathogenesis of bone loss in human diseases caused by mutations in fibrillin-1 or -2.
细胞外基质中非胶原蛋白成分对骨强度的贡献在很大程度上尚未确定。在这里,我们报告称,原纤维蛋白-1 或原纤维蛋白-2 微纤维的缺乏会导致骨材料和机械性能的明显变化。对分别具有原纤维蛋白-1 或原纤维蛋白-2 低功能或缺失突变的小鼠进行形态计量学检查,发现长骨在出生后的塑造和生长方面存在明显差异。傅里叶变换红外成像光谱表明,原纤维蛋白-1 比原纤维蛋白-2 在决定骨骼材料特性方面发挥更大的作用。生物力学测试表明,原纤维蛋白-2 对骨骼机械性能的积极影响大于原纤维蛋白-1 组装体。已发表的证据间接支持这样一种观点,即上述发现主要(如果不是完全的话)与 TGFβ 家族信号转导的原纤维蛋白的差异控制有关。因此,我们的研究增进了对细胞外微纤维在骨骼生理学中的作用的理解,并且隐含地,在由原纤维蛋白-1 或 -2 突变引起的人类疾病中的骨丢失的发病机制中。