Wofsy C, Goldstein B
Department of Mathematics and Statistics, University of New Mexico, Albuquerque 87131.
J Immunol. 1990 Sep 15;145(6):1814-25.
B lymphocyte responses to the cross-linking of surface Ig (sIg) are known to be inhibited, when IgG is the cross-linking agent, by the concurrent binding of the Fc portion of the IgG to Fc gamma R. We present a mathematical framework for designing and analyzing experiments aimed at uncovering the inhibition mechanism(s). From our model, we calculate concentrations of receptors and ligands in the different cell surface states, at equilibrium or as a function of time. IgG can cross-link surface receptors in three ways, i.e., by bridging two sIg molecules without Fc binding, by bridging two sIg while binding as well to an Fc gamma R, and by binding to an Fc gamma R and only one sIg. We show how the concentrations or fractions of these distinct cross-linked states depend on experimentally manipulable variables, including the concentrations of intact IgG, bivalent and monovalent IgG fragments, and agents that block Fc binding. Then, using simple signal/response relationships, reflecting active and passive mechanisms of Fc-mediated inhibition, we simulate the results of a variety of experiments. In cases where published experimental results are available, we find that the qualitative predictions of our general model are consistent with the data and that comparisons of simulations with available data provide some quantitative information about the parameters governing the cell surface signaling events. In particular, comparison of model predictions with published experiments on the kinetics of IgG-induced inositol trisphosphate production indicate that sIg cross-links form more rapidly than sIg-Fc gamma R "co-cross-links." Further, IgG-sIg bonds stabilize Fc attachments, i.e., the dissociation of IgG from Fc gamma R is slowed significantly when the IgG is also cross-linked to sIg. Predictions of the model suggest other experiments and ways of presenting the data that will help to identify relationships between the molecular signaling events occurring on the cell surface and the various cellular responses.
已知当IgG作为交联剂时,B淋巴细胞对表面免疫球蛋白(sIg)交联的反应会受到抑制,这是由于IgG的Fc部分与FcγR同时结合所致。我们提出了一个数学框架,用于设计和分析旨在揭示抑制机制的实验。根据我们的模型,我们计算了在不同细胞表面状态下,处于平衡状态或作为时间函数的受体和配体浓度。IgG可以通过三种方式交联表面受体,即通过桥接两个不结合Fc的sIg分子、通过桥接两个sIg同时也结合一个FcγR以及通过结合一个FcγR和仅一个sIg。我们展示了这些不同交联状态的浓度或比例如何取决于实验可操作变量,包括完整IgG、二价和单价IgG片段的浓度以及阻断Fc结合的试剂。然后,使用反映Fc介导抑制的主动和被动机制的简单信号/反应关系,我们模拟了各种实验的结果。在有已发表实验结果的情况下,我们发现我们的通用模型的定性预测与数据一致,并且模拟与现有数据的比较提供了一些关于控制细胞表面信号事件的参数的定量信息。特别是,将模型预测与关于IgG诱导的肌醇三磷酸产生动力学的已发表实验进行比较表明,sIg交联形成比sIg-FcγR“共交联”更快。此外,IgG-sIg键稳定了Fc附着,即当IgG也与sIg交联时,IgG从FcγR的解离显著减慢。该模型的预测表明了其他实验以及呈现数据的方式,这将有助于确定细胞表面发生的分子信号事件与各种细胞反应之间的关系。