Suppr超能文献

从海洋和河口沉积物中富集的氨氧化古菌的核心和完整极性甘油二植烷甘油四醚脂质。

Core and intact polar glycerol dibiphytanyl glycerol tetraether lipids of ammonia-oxidizing archaea enriched from marine and estuarine sediments.

机构信息

NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Texel, Netherlands.

出版信息

Appl Environ Microbiol. 2011 May;77(10):3468-77. doi: 10.1128/AEM.02758-10. Epub 2011 Mar 25.

Abstract

Glycerol dibiphytanyl glycerol tetraether (GDGT)-based intact membrane lipids are increasingly being used as complements to conventional molecular methods in ecological studies of ammonia-oxidizing archaea (AOA) in the marine environment. However, the few studies that have been done on the detailed lipid structures synthesized by AOA in (enrichment) culture are based on species enriched from nonmarine environments, i.e., a hot spring, an aquarium filter, and a sponge. Here we have analyzed core and intact polar lipid (IPL)-GDGTs synthesized by three newly available AOA enriched directly from marine sediments taken from the San Francisco Bay estuary ("Candidatus Nitrosoarchaeum limnia"), and coastal marine sediments from Svalbard, Norway, and South Korea. Like previously screened AOA, the sedimentary AOA all synthesize crenarchaeol (a GDGT containing a cyclohexane moiety and four cyclopentane moieties) as a major core GDGT, thereby supporting the hypothesis that crenarchaeol is a biomarker lipid for AOA. The IPL headgroups synthesized by sedimentary AOA comprised mainly monohexose, dihexose, phosphohexose, and hexose-phosphohexose moieties. The hexose-phosphohexose headgroup bound to crenarchaeol was common to all enrichments and, in fact, the only IPL common to every AOA enrichment analyzed to date. This apparent specificity, in combination with its inferred lability, suggests that it may be the most suitable biomarker lipid to trace living AOA. GDGTs bound to headgroups with a mass of 180 Da of unknown structure appear to be specific to the marine group I.1a AOA: they were synthesized by all three sedimentary AOA and "Candidatus Nitrosopumilus maritimus"; however, they were absent in the group I.1b AOA "Candidatus Nitrososphaera gargensis."

摘要

甘油二植烷甘油四醚 (GDGT)-基完整膜脂越来越多地被用作海洋环境中氨氧化古菌 (AOA) 生态研究中传统分子方法的补充。然而,少数关于 AOA 在 (富集) 培养中合成的详细脂质结构的研究是基于从非海洋环境中富集的物种,即温泉、水族馆过滤器和海绵。在这里,我们分析了直接从旧金山湾河口采集的海洋沉积物中富集的三种新型 AOA 合成的核心和完整极性脂 (IPL)-GDGTs(“Candidatus Nitrosoarchaeum limnia”),以及来自挪威斯瓦尔巴和韩国的沿海海洋沉积物。与之前筛选出的 AOA 一样,沉积物 AOA 均合成 crenarchaeol(一种含有环己烷部分和四个环戊烷部分的 GDGT)作为主要核心 GDGT,从而支持 crenarchaeol 是 AOA 生物标志物脂质的假说。沉积物 AOA 合成的 IPL 头基主要由单己糖、二己糖、磷酸己糖和己糖-磷酸己糖组成。与 crenarchaeol 结合的己糖-磷酸己糖头基存在于所有富集物中,实际上是迄今为止分析的每一种 AOA 富集物中唯一的 IPL。这种明显的特异性,结合其推断的不稳定性,表明它可能是追踪活 AOA 最适合的生物标志物脂质。与未知结构质量为 180 Da 的头基结合的 GDGT 似乎是海洋 I.1a AOA 的特有脂质:它们由所有三种沉积物 AOA 和“Candidatus Nitrosopumilus maritimus”合成;然而,它们在 I.1b AOA“Candidatus Nitrososphaera gargensis”中不存在。

相似文献

2
Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids of group I.1a and I.1b thaumarchaeota in soil.
Appl Environ Microbiol. 2012 Oct;78(19):6866-74. doi: 10.1128/AEM.01681-12. Epub 2012 Jul 20.
8
Archaeal lipids trace ecology and evolution of marine ammonia-oxidizing archaea.
Proc Natl Acad Sci U S A. 2022 Aug 2;119(31):e2123193119. doi: 10.1073/pnas.2123193119. Epub 2022 Jul 29.
9
Ecophysiology of an ammonia-oxidizing archaeon adapted to low-salinity habitats.
Microb Ecol. 2012 Nov;64(4):955-63. doi: 10.1007/s00248-012-0075-1. Epub 2012 May 30.

引用本文的文献

1
as main source of isoprenoid glycerol dialkyl glycerol tetraether lipids in the central Baltic Sea.
Front Microbiol. 2023 Sep 28;14:1216130. doi: 10.3389/fmicb.2023.1216130. eCollection 2023.
3
Marine Group II Euryarchaeota Contribute to the Archaeal Lipid Pool in Northwestern Pacific Ocean Surface Waters.
Front Microbiol. 2020 Jun 5;11:1034. doi: 10.3389/fmicb.2020.01034. eCollection 2020.
6
Archaeal Sources of Intact Membrane Lipid Biomarkers in the Oxygen Deficient Zone of the Eastern Tropical South Pacific.
Front Microbiol. 2019 Apr 11;10:765. doi: 10.3389/fmicb.2019.00765. eCollection 2019.
7
New Insights Into the Polar Lipid Composition of Extremely Halo(alkali)philic Euryarchaea From Hypersaline Lakes.
Front Microbiol. 2019 Mar 12;10:377. doi: 10.3389/fmicb.2019.00377. eCollection 2019.

本文引用的文献

1
Determination of the sedimentary microbial biomass by extractible lipid phosphate.
Oecologia. 1979 Jan;40(1):51-62. doi: 10.1007/BF00388810.
2
Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone.
ISME J. 2011 Dec;5(12):1896-904. doi: 10.1038/ismej.2011.60. Epub 2011 May 19.
3
Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis.
PLoS One. 2011 Feb 22;6(2):e16626. doi: 10.1371/journal.pone.0016626.
4
Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria.
Appl Environ Microbiol. 2010 Nov;76(22):7575-87. doi: 10.1128/AEM.01478-10. Epub 2010 Sep 24.
5
Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota.
Trends Microbiol. 2010 Aug;18(8):331-40. doi: 10.1016/j.tim.2010.06.003. Epub 2010 Jul 2.
7
Detection of microbial biomass by intact polar membrane lipid analysis in the water column and surface sediments of the Black Sea.
Environ Microbiol. 2009 Oct;11(10):2720-34. doi: 10.1111/j.1462-2920.2009.01999.x. Epub 2009 Jul 16.
8
In situ production of crenarchaeol in two california hot springs.
Appl Environ Microbiol. 2009 Jul;75(13):4443-51. doi: 10.1128/AEM.02591-08. Epub 2009 May 1.
9
Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary.
Environ Microbiol. 2008 Nov;10(11):3002-16. doi: 10.1111/j.1462-2920.2008.01764.x.
10
Significant contribution of Archaea to extant biomass in marine subsurface sediments.
Nature. 2008 Aug 21;454(7207):991-4. doi: 10.1038/nature07174. Epub 2008 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验