Suppr超能文献

逻辑剂量反应模型中的偏倚减少

Bias reduction in logistic dose-response models.

作者信息

Wagler A

机构信息

Department of Mathematical Sciences, University of Texas at El Paso, El Paso, Texas 79968, USA.

出版信息

J Biopharm Stat. 2011 May;21(3):405-22. doi: 10.1080/10543401003703306.

Abstract

In generalized linear models, such as the logistic regression model, maximum likelihood estimators are well known to be biased at smaller sample sizes. When the number of dose levels or replications per dose is small, bias in the maximum likelihood estimates can lead to very misleading results and the model often fails to converge. In order to correct the bias present in the maximum likelihood estimates and the problem of nonconvergence, the penalized maximum likelihood estimator is considered. Simulations compare the fit and empirical confidence levels of inferences made from the maximum likelihood and penalized maximum likelihood based models.

摘要

在广义线性模型中,如逻辑回归模型,众所周知,最大似然估计量在样本量较小时会有偏差。当剂量水平的数量或每个剂量的重复次数较少时,最大似然估计中的偏差可能会导致极具误导性的结果,并且模型常常无法收敛。为了纠正最大似然估计中存在的偏差以及非收敛问题,考虑了惩罚最大似然估计量。模拟比较了基于最大似然和惩罚最大似然模型所做推断的拟合度和经验置信水平。

相似文献

1
Bias reduction in logistic dose-response models.
J Biopharm Stat. 2011 May;21(3):405-22. doi: 10.1080/10543401003703306.
7
Pseudolikelihood estimation of the Rasch model.
J Outcome Meas. 2000;4(1):513-23.
8
A comparative study of the bias corrected estimates in logistic regression.
Stat Methods Med Res. 2008 Dec;17(6):621-34. doi: 10.1177/0962280207084156. Epub 2008 Mar 28.
9
Maximum likelihood estimation of the kappa coefficient from bivariate logistic regression.
Stat Med. 1996 Jul 15;15(13):1409-19. doi: 10.1002/(SICI)1097-0258(19960715)15:13<1409::AID-SIM269>3.0.CO;2-N.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验