Suppr超能文献

渗透驱动的晶体形态发生:一种基于多金属氧酸盐的微米级管状结构制造的通用方法。

Osmotically driven crystal morphogenesis: a general approach to the fabrication of micrometer-scale tubular architectures based on polyoxometalates.

机构信息

School of Chemistry, WestCHEM, The University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.

出版信息

J Am Chem Soc. 2011 Apr 20;133(15):5947-54. doi: 10.1021/ja111011j. Epub 2011 Mar 29.

Abstract

The process of osmotically driven crystal morphogenesis of polyoxometalate (POM)-based crystals is investigated, whereby the transformation results in the growth of micrometer-scale tubes 10-100 μm in diameter and many thousands of micrometers long. This process initiates when the crystals are immersed in aqueous solutions containing large cations and is governed by the solubility of the parent POM crystal. Evidence is presented that indicates the process is general to all types of POMs, with solubility of the parent crystal being the deciding parameter. A modular approach is adopted since different POM precursor crystals can form tubular architectures with a range of large cationic species, producing an ion-exchanged material that combines the large added cations and the large POM-based anions. It is also shown that the process of morphogenesis is electrostatically driven by the aggregation of anionic metal oxides with the dissolved cations. This leads to the formation of a semi-permeable membrane around the crystal. The osmotically driven ingress of water leads to an increase in pressure, and ultimately rupture of the membrane occurs, allowing a saturated solution of the POM to escape and leading to the formation of a "self-growing" microtube in the presence of the cation. It is demonstrated that the growth process is sustained by the osmotic pressure within the membrane surrounding the parent crystal, as tube growth ceases whenever this pressure is relieved. Not only is the potential of the modular approach revealed by the fact that the microtubes retain the properties of their component parts, but it is also possible to control the direction of growth and tube diameter. In addition, the solubility limits of tube growth are explored and translated into a predictive methodology for the fabrication of tubular architectures with predefined physical properties, opening the way for real applications.

摘要

研究了多金属氧酸盐(POM)基晶体的渗透驱动晶体形态发生过程,其中转化导致直径为 10-100μm 且长度达数千微米的微米级管的生长。当晶体浸入含有大阳离子的水溶液中时,该过程就会开始,并且受母体 POM 晶体的溶解度控制。有证据表明,该过程对所有类型的 POM 都是通用的,母体晶体的溶解度是决定因素。采用模块化方法,因为不同的 POM 前体晶体可以与一系列大的阳离子物种形成管状结构,从而产生一种离子交换材料,它结合了大的外加阳离子和大的基于 POM 的阴离子。还表明形态发生过程是由阴离子金属氧化物与溶解的阳离子的聚集静电驱动的。这导致在晶体周围形成半透膜。渗透作用导致水的进入导致压力增加,最终膜破裂,允许 POM 的饱和溶液逸出,并在阳离子存在下导致“自生长”微管的形成。证明了生长过程是由包围母体晶体的膜内的渗透压维持的,因为只要这种压力得到缓解,管的生长就会停止。不仅是模块化方法的潜力通过微管保留其组成部分的性质得到了揭示,而且还可以控制生长方向和管直径。此外,还探索了管生长的溶解度极限,并将其转化为具有预定物理性质的管状结构制造的预测方法,为实际应用开辟了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验