Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FIN 40014, Finland.
J Phys Chem A. 2011 Jun 30;115(25):7077-88. doi: 10.1021/jp1123986. Epub 2011 Mar 30.
We introduce an experimental platform designed around a thermomechanical helium fountain, which is aimed at investigating spectroscopy and dynamics of atoms and molecules in the superfluid and at its vapor interface. Laser ablation of copper, efficient cooling and transport of Cu and Cu(2) through helium vapor (1.5 K < T < 20 K), formation of linear and T-shaped Cu(2)-He complexes, and their continuous evolution into large Cu(2)-He(n) clusters and droplets are among the processes that are illustrated. Reflection is the dominant quantum scattering channel of translationally cold copper atoms (T = 1.7 K) at the fountain interface. Cu(2) dimers mainly travel through the fountain unimpeded. However, the conditions of fountain flow and transport of molecules can be controlled to demonstrate injection and, in particular, injection into a nondivergent columnar fountain with a plug velocity of about 1 m/s. The experimental observables are interpreted with the aid of bosonic density functional theory calculations and ab initio interaction potentials.
我们介绍了一个围绕热机械氦喷泉设计的实验平台,旨在研究超流及其蒸气界面中原子和分子的光谱和动力学。我们展示了一系列过程,包括铜的激光烧蚀、Cu 和 Cu(2) 通过氦蒸气(1.5 K < T < 20 K)的高效冷却和传输、线性和 T 形 Cu(2)-He 配合物的形成,以及它们连续演变成大的 Cu(2)-He(n) 团簇和液滴。在喷泉界面处,反射是平移冷铜原子(T = 1.7 K)的主要量子散射通道。Cu(2) 二聚体主要无阻地穿过喷泉。然而,可以控制喷泉流动和分子传输的条件,以演示注入,特别是以约 1 m/s 的塞流速度注入无发散柱状喷泉。借助玻色密度泛函理论计算和从头算相互作用势来解释实验观测结果。