Pharmazeutische/Medizinische Chemie, Institut für Pharmazie, Ernst-Moritz-Arndt Universität Greifswald, 17487, Greifswald, Germany.
Dalton Trans. 2011 May 21;40(19):5342-51. doi: 10.1039/c0dt01485k. Epub 2011 Apr 4.
Light-activation of metal ion complexes to cytotoxic species is of interest due to the potential use in anticancer therapy. Two platinum complexes, trans,trans,trans-[Pt(IV)(N(3))(2)(OH)(2)(NH(3))(2)] (3) and trans,trans,trans-[Pt(IV)(N(3))(2)(OH)(2)(py)(NH(3))] (4) were irradiated with either UV (λ = 366 nm) or white fluorescent light and the various photochemical and photobiological phenomena were characterized. HPLC coupled to UV/Vis and MS detection was used to identify photochemical species resulting from irradiation of 4 with UV and white light. These studies showed that various Pt(IV) and Pt(II) products formed during the photolysis. The mass spectra of Pt(IV) complexes showed Pt ions in both the positive as well as the negative mode while Pt(II) complexes resulted in only positively charged Pt(III) ions. Since cellular DNA is considered to be a key target for platinum antitumor drugs, the irreversible platination of calf thymus DNA by the photoactivated Pt(IV) complexes was followed by Atomic Adsorption spectrometry (AAS). The effect of adding chloride or biological reducing agents glutathione (GSH) and ascorbic acid on the rates of DNA platination where also studied. Upon activation by light, both compounds show similar binding behaviour to DNA, but the rates of DNA platination for 3 were faster than for 4. Both chloride and GSH protected DNA from platination by the photoactivated compounds; consistent with the trapping of reactive aqua-Pt species. The presence of ascorbate increased the level of platinum bound to DNA for photoactivated 4 but not for 3. Without photoactivation, little or no DNA platination was observed, either with or without ascorbate or GSH. Cytotoxicity studies with two human cancer cell lines underline the photochemotherapeutic potential of these compounds. Striking is the increase in cytotoxic potency with the replacement of an ammine by a pyridine ligand.
由于在抗癌治疗中的潜在应用,将金属离子配合物光激活为细胞毒性物质引起了人们的兴趣。两种铂配合物,顺式,反式,反式-[Pt(IV)(N(3))(2)(OH)(2)(NH(3))(2)](3)和反式,反式,反式-[Pt(IV)(N(3))(2)(OH)(2)(py)(NH(3))](4)分别用紫外线(λ=366nm)或白色荧光灯照射,并对各种光化学和光生物学现象进行了表征。使用 HPLC 与紫外/可见和 MS 检测相结合,鉴定了用紫外光和白光照射 4 产生的光化学反应产物。这些研究表明,在光解过程中形成了各种 Pt(IV)和 Pt(II)产物。Pt(IV)配合物的质谱显示 Pt 离子处于正离子和负离子两种形式,而 Pt(II)配合物仅产生带正电荷的 Pt(III)离子。由于细胞 DNA 被认为是铂类抗肿瘤药物的关键靶标,因此通过原子吸收光谱法(AAS)跟踪光激活的 Pt(IV)配合物对小牛胸腺 DNA 的不可逆铂化作用。还研究了添加氯离子或生物还原剂谷胱甘肽(GSH)和抗坏血酸对 DNA 铂化速率的影响。在光激活后,两种化合物均表现出与 DNA 相似的结合行为,但 3 的 DNA 铂化速率快于 4。氯离子和 GSH 均能保护 DNA 免受光激活化合物的铂化;与活性水合 Pt 物种的捕获一致。抗坏血酸的存在增加了光激活 4 结合到 DNA 的铂水平,但对 3 则没有。在没有光激活的情况下,无论是有还是没有抗坏血酸或 GSH,都很少或没有观察到 DNA 铂化。用两种人类癌细胞系进行的细胞毒性研究强调了这些化合物的光化疗潜力。引人注目的是,用吡啶配体替代氨配体可大大提高细胞毒性。