Suppr超能文献

多态态 CASPT2 研究天然铁(III)依赖性儿茶酚 1,2-双加氧酶及其功能模型:电子结构和配体到金属的电荷转移激发。

Multistate CASPT2 study of native iron(III)-dependent catechol dioxygenase and its functional models: electronic structure and ligand-to-metal charge-transfer excitation.

机构信息

Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan.

出版信息

J Phys Chem B. 2011 Apr 28;115(16):4781-9. doi: 10.1021/jp110045f. Epub 2011 Apr 4.

Abstract

We theoretically investigated the ligand-to-metal charge-transfer (LMCT) excitation of the native iron(III)-dependent catechol dioxygenase and its functional model complexes with multistate complete active space second-order perturbation theory (MS-CASPT2) because the LMCT (catecholate-to-iron(III) charge-transfer) excitation energy is believed to relate to the reactivity of the native enzyme and its functional model complexes. The ground state calculated by the MS-CASPT2 method mainly consists of the iron(III)-catecholate electron configuration and moderately of the iron(II)-semiquinonate electron configuration for both of the enzyme active centers and the model complexes when the active center exists in the protein environment and the model complexes exist in the solution. However, the ground-state wave function mainly consists of the iron(II)-semiquinonate electron configuration for both the enzyme active site without a protein environment and the model complexes in vacuo. These results clearly show that the protein environment and solvent play important roles to determine the electronic structure of the catecholatoiron(III) complex. The LMCT excitation energy clearly relates to the weight of the iron(III)-catecholate configuration in the ground state. The reactivity and the LMCT excitation energy directly relate to the ionization potential of the catecholate (IP(CAT)) in the model complex. This is because the charge transfer from the catecholate moiety to the dioxygen molecule plays a key role to activate the dioxygen molecule. However, the reactivity of the native catechol dioxygenase is much larger than those of the model complexes, despite the similar IP(CAT) values, suggesting that other factors such as the coordinatively unsaturated iron(III) center of the native enzyme play a crucial role in the reactivity.

摘要

我们从理论上研究了天然铁依赖性儿茶酚双加氧酶及其功能模型配合物的配体到金属电荷转移(LMCT)激发,因为 LMCT(儿茶酚到铁(III)电荷转移)激发能被认为与天然酶及其功能模型配合物的反应性有关。MS-CASPT2 方法计算的基态主要由铁(III)-儿茶酚络合物的电子构型和铁(II)-半醌的电子构型组成,对于酶的活性中心和模型配合物,当活性中心存在于蛋白质环境中和模型配合物存在于溶液中时。然而,对于没有蛋白质环境的酶活性中心和真空中的模型配合物,基态波函数主要由铁(II)-半醌的电子构型组成。这些结果清楚地表明,蛋白质环境和溶剂在确定儿茶酚铁(III)络合物的电子结构方面起着重要作用。LMCT 激发能与基态中铁(III)-儿茶酚络合物构型的权重明显相关。反应性和 LMCT 激发能直接与模型配合物中儿茶酚的电离势(IP(CAT))相关。这是因为从儿茶酚部分到氧分子的电荷转移在激活氧分子中起着关键作用。然而,尽管 IP(CAT)值相似,但天然儿茶酚双加氧酶的反应性远大于模型配合物,这表明其他因素,如天然酶中配位不饱和的铁(III)中心,在反应性中起着至关重要的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验