Suppr超能文献

评估柔性骨架蛋白设计方法在治疗性抗体赫赛汀-HER2 界面序列文库预测中的应用。

Assessment of flexible backbone protein design methods for sequence library prediction in the therapeutic antibody Herceptin-HER2 interface.

机构信息

California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, California 94158-2330, USA.

出版信息

Protein Sci. 2011 Jun;20(6):1082-9. doi: 10.1002/pro.632. Epub 2011 May 3.

Abstract

Computational protein design methods can complement experimental screening and selection techniques by predicting libraries of low-energy sequences compatible with a desired structure and function. Incorporating backbone flexibility in computational design allows conformational adjustments that should broaden the range of predicted low-energy sequences. Here, we evaluate computational predictions of sequence libraries from different protocols for modeling backbone flexibility using the complex between the therapeutic antibody Herceptin and its target human epidermal growth factor receptor 2 (HER2) as a model system. Within the program RosettaDesign, three methods are compared: The first two use ensembles of structures generated by Monte Carlo protocols for near-native conformational sampling: kinematic closure (KIC) and backrub, and the third method uses snapshots from molecular dynamics (MD) simulations. KIC or backrub methods were better able to identify the amino acid residues experimentally observed by phage display in the Herceptin-HER2 interface than MD snapshots, which generated much larger conformational and sequence diversity. KIC and backrub, as well as fixed backbone simulations, captured the key mutation Asp98Trp in Herceptin, which leads to a further threefold affinity improvement of the already subnanomolar parental Herceptin-HER2 interface. Modeling subtle backbone conformational changes may assist in the design of sequence libraries for improving the affinity of antibody-antigen interfaces and could be suitable for other protein complexes for which structural information is available.

摘要

计算蛋白质设计方法可以通过预测与期望结构和功能兼容的低能序列文库来补充实验筛选和选择技术。在计算设计中纳入骨架柔性可以允许构象调整,从而拓宽预测低能序列的范围。在这里,我们使用曲妥珠单抗(Herceptin)与其靶标人类表皮生长因子受体 2(HER2)之间的复合物作为模型系统,评估了不同骨架柔性建模协议的计算预测序列文库。在 RosettaDesign 程序中,比较了三种方法:前两种方法使用通过 Monte Carlo 协议生成的结构集合进行近天然构象采样:运动学封闭(KIC)和 backrub,第三种方法使用分子动力学(MD)模拟的快照。KIC 或 backrub 方法比 MD 快照更能识别噬菌体展示实验中观察到的 Herceptin-HER2 界面中的氨基酸残基,后者产生了更大的构象和序列多样性。KIC 和 backrub 以及固定骨架模拟都捕获了 Herceptin 中的关键突变 Asp98Trp,这导致已经亚纳摩尔的亲本 Herceptin-HER2 界面的亲和力进一步提高了三倍。对细微骨架构象变化的建模可能有助于设计提高抗体-抗原界面亲和力的序列文库,并且可能适用于具有结构信息的其他蛋白质复合物。

相似文献

3
RosettaAntibodyDesign (RAbD): A general framework for computational antibody design.
PLoS Comput Biol. 2018 Apr 27;14(4):e1006112. doi: 10.1371/journal.pcbi.1006112. eCollection 2018 Apr.
4
Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab.
Nature. 2003 Feb 13;421(6924):756-60. doi: 10.1038/nature01392.
7
Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site.
Science. 2009 Mar 20;323(5921):1610-4. doi: 10.1126/science.1165480.
8
Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction.
J Mol Biol. 2008 Jul 18;380(4):742-56. doi: 10.1016/j.jmb.2008.05.023. Epub 2008 May 17.
9
Structure and conformational variability of the HER2-trastuzumab-pertuzumab complex.
J Struct Biol. 2024 Jun;216(2):108095. doi: 10.1016/j.jsb.2024.108095. Epub 2024 May 7.
10
Structural Characterization of Monoclonal Antibodies and Epitope Mapping by FFAP Footprinting.
Anal Chem. 2024 May 14;96(19):7386-7393. doi: 10.1021/acs.analchem.3c04161. Epub 2024 May 2.

引用本文的文献

1
Generation of bright monomeric red fluorescent proteins computational design of enhanced chromophore packing.
Chem Sci. 2022 Jan 11;13(5):1408-1418. doi: 10.1039/d1sc05088e. eCollection 2022 Feb 2.
2
IsAb: a computational protocol for antibody design.
Brief Bioinform. 2021 Sep 2;22(5). doi: 10.1093/bib/bbab143.
3
Ensemble-based enzyme design can recapitulate the effects of laboratory directed evolution in silico.
Nat Commun. 2020 Sep 23;11(1):4808. doi: 10.1038/s41467-020-18619-x.
4
Antibody Structure and Function: The Basis for Engineering Therapeutics.
Antibodies (Basel). 2019 Dec 3;8(4):55. doi: 10.3390/antib8040055.
5
Computational design of a modular protein sense-response system.
Science. 2019 Nov 22;366(6468):1024-1028. doi: 10.1126/science.aax8780.
6
Comparison of Rosetta flexible-backbone computational protein design methods on binding interactions.
Proteins. 2020 Jan;88(1):206-226. doi: 10.1002/prot.25790. Epub 2019 Aug 10.
7
Formation of multimeric antibodies for self-delivery of active monomers.
Drug Deliv. 2017 Nov;24(1):199-208. doi: 10.1080/10717544.2016.1242179.
8
Pushing the Backbone in Protein-Protein Docking.
Structure. 2016 Oct 4;24(10):1821-1829. doi: 10.1016/j.str.2016.06.025. Epub 2016 Aug 25.
9
Algorithms for protein design.
Curr Opin Struct Biol. 2016 Aug;39:16-26. doi: 10.1016/j.sbi.2016.03.006. Epub 2016 Apr 14.
10
Computationally Designed Bispecific Antibodies using Negative State Repertoires.
Structure. 2016 Apr 5;24(4):641-651. doi: 10.1016/j.str.2016.02.013. Epub 2016 Mar 17.

本文引用的文献

1
Structure-based prediction of the peptide sequence space recognized by natural and synthetic PDZ domains.
J Mol Biol. 2010 Sep 17;402(2):460-74. doi: 10.1016/j.jmb.2010.07.032. Epub 2010 Jul 21.
2
Designing ensembles in conformational and sequence space to characterize and engineer proteins.
Curr Opin Struct Biol. 2010 Jun;20(3):377-84. doi: 10.1016/j.sbi.2010.02.004. Epub 2010 Mar 19.
3
Backbone flexibility in computational protein design.
Curr Opin Biotechnol. 2009 Aug;20(4):420-8. doi: 10.1016/j.copbio.2009.07.006. Epub 2009 Aug 24.
5
Incorporating receptor flexibility in the molecular design of protein interfaces.
Protein Eng Des Sel. 2009 Sep;22(9):575-86. doi: 10.1093/protein/gzp042. Epub 2009 Jul 30.
6
A correspondence between solution-state dynamics of an individual protein and the sequence and conformational diversity of its family.
PLoS Comput Biol. 2009 May;5(5):e1000393. doi: 10.1371/journal.pcbi.1000393. Epub 2009 May 29.
8
A simple model of backbone flexibility improves modeling of side-chain conformational variability.
J Mol Biol. 2008 Jul 18;380(4):757-74. doi: 10.1016/j.jmb.2008.05.006. Epub 2008 May 11.
9
Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction.
J Mol Biol. 2008 Jul 18;380(4):742-56. doi: 10.1016/j.jmb.2008.05.023. Epub 2008 May 17.
10
Modeling backbone flexibility improves protein stability estimation.
Structure. 2007 Dec;15(12):1567-76. doi: 10.1016/j.str.2007.09.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验