California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, California 94158-2330, USA.
Protein Sci. 2011 Jun;20(6):1082-9. doi: 10.1002/pro.632. Epub 2011 May 3.
Computational protein design methods can complement experimental screening and selection techniques by predicting libraries of low-energy sequences compatible with a desired structure and function. Incorporating backbone flexibility in computational design allows conformational adjustments that should broaden the range of predicted low-energy sequences. Here, we evaluate computational predictions of sequence libraries from different protocols for modeling backbone flexibility using the complex between the therapeutic antibody Herceptin and its target human epidermal growth factor receptor 2 (HER2) as a model system. Within the program RosettaDesign, three methods are compared: The first two use ensembles of structures generated by Monte Carlo protocols for near-native conformational sampling: kinematic closure (KIC) and backrub, and the third method uses snapshots from molecular dynamics (MD) simulations. KIC or backrub methods were better able to identify the amino acid residues experimentally observed by phage display in the Herceptin-HER2 interface than MD snapshots, which generated much larger conformational and sequence diversity. KIC and backrub, as well as fixed backbone simulations, captured the key mutation Asp98Trp in Herceptin, which leads to a further threefold affinity improvement of the already subnanomolar parental Herceptin-HER2 interface. Modeling subtle backbone conformational changes may assist in the design of sequence libraries for improving the affinity of antibody-antigen interfaces and could be suitable for other protein complexes for which structural information is available.
计算蛋白质设计方法可以通过预测与期望结构和功能兼容的低能序列文库来补充实验筛选和选择技术。在计算设计中纳入骨架柔性可以允许构象调整,从而拓宽预测低能序列的范围。在这里,我们使用曲妥珠单抗(Herceptin)与其靶标人类表皮生长因子受体 2(HER2)之间的复合物作为模型系统,评估了不同骨架柔性建模协议的计算预测序列文库。在 RosettaDesign 程序中,比较了三种方法:前两种方法使用通过 Monte Carlo 协议生成的结构集合进行近天然构象采样:运动学封闭(KIC)和 backrub,第三种方法使用分子动力学(MD)模拟的快照。KIC 或 backrub 方法比 MD 快照更能识别噬菌体展示实验中观察到的 Herceptin-HER2 界面中的氨基酸残基,后者产生了更大的构象和序列多样性。KIC 和 backrub 以及固定骨架模拟都捕获了 Herceptin 中的关键突变 Asp98Trp,这导致已经亚纳摩尔的亲本 Herceptin-HER2 界面的亲和力进一步提高了三倍。对细微骨架构象变化的建模可能有助于设计提高抗体-抗原界面亲和力的序列文库,并且可能适用于具有结构信息的其他蛋白质复合物。