Suppr超能文献

通过收集额外的单核苷酸多态性来提高全基因组关联研究的效力。

Increasing power of genome-wide association studies by collecting additional single-nucleotide polymorphisms.

机构信息

Department of Computer Science, University of California, Los Angeles, California 90095-1596, USA.

出版信息

Genetics. 2011 Jun;188(2):449-60. doi: 10.1534/genetics.111.128595. Epub 2011 Apr 5.

Abstract

Genome-wide association studies (GWASs) have been effectively identifying the genomic regions associated with a disease trait. In a typical GWAS, an informative subset of the single-nucleotide polymorphisms (SNPs), called tag SNPs, is genotyped in case/control individuals. Once the tag SNP statistics are computed, the genomic regions that are in linkage disequilibrium (LD) with the most significantly associated tag SNPs are believed to contain the causal polymorphisms. However, such LD regions are often large and contain many additional polymorphisms. Following up all the SNPs included in these regions is costly and infeasible for biological validation. In this article we address how to characterize these regions cost effectively with the goal of providing investigators a clear direction for biological validation. We introduce a follow-up study approach for identifying all untyped associated SNPs by selecting additional SNPs, called follow-up SNPs, from the associated regions and genotyping them in the original case/control individuals. We introduce a novel SNP selection method with the goal of maximizing the number of associated SNPs among the chosen follow-up SNPs. We show how the observed statistics of the original tag SNPs and human genetic variation reference data such as the HapMap Project can be utilized to identify the follow-up SNPs. We use simulated and real association studies based on the HapMap data and the Wellcome Trust Case Control Consortium to demonstrate that our method shows superior performance to the correlation- and distance-based traditional follow-up SNP selection approaches. Our method is publicly available at http://genetics.cs.ucla.edu/followupSNPs.

摘要

全基因组关联研究(GWAS)已成功确定与疾病特征相关的基因组区域。在典型的 GWAS 中,对病例/对照个体中的一组信息单核苷酸多态性(SNP),称为标签 SNP,进行基因分型。一旦计算出标签 SNP 统计数据,就认为与最显著相关的标签 SNP 处于连锁不平衡(LD)的基因组区域包含因果多态性。然而,这些 LD 区域通常很大,包含许多其他多态性。在这些区域中跟踪所有包含的 SNP 既昂贵又不适合生物验证。在本文中,我们将解决如何以经济有效的方式对这些区域进行特征描述,旨在为研究人员提供明确的生物验证方向。我们提出了一种后续研究方法,通过从关联区域中选择额外的 SNP(称为后续 SNP)并对原始病例/对照个体进行基因分型,从而有效地对这些区域进行后续研究,以识别所有未分型的关联 SNP。我们介绍了一种新的 SNP 选择方法,目的是在选择的后续 SNP 中最大化关联 SNP 的数量。我们展示了如何利用原始标签 SNP 的观察统计数据和人类遗传变异参考数据(如 HapMap 项目)来识别后续 SNP。我们使用基于 HapMap 数据和 Wellcome Trust Case Control Consortium 的模拟和真实关联研究来证明我们的方法优于基于相关性和距离的传统后续 SNP 选择方法。我们的方法可在 http://genetics.cs.ucla.edu/followupSNPs 上公开获取。

相似文献

引用本文的文献

4
Widespread Allelic Heterogeneity in Complex Traits.复杂性状中的广泛等位基因异质性。
Am J Hum Genet. 2017 May 4;100(5):789-802. doi: 10.1016/j.ajhg.2017.04.005.
5
Enhanced methods to detect haplotypic effects on gene expression.检测单倍型对基因表达影响的改进方法。
Bioinformatics. 2017 Aug 1;33(15):2307-2313. doi: 10.1093/bioinformatics/btx142.
8
Multiple testing correction in linear mixed models.线性混合模型中的多重检验校正
Genome Biol. 2016 Apr 1;17:62. doi: 10.1186/s13059-016-0903-6.
9
Gene-Gene Interactions Detection Using a Two-stage Model.使用两阶段模型检测基因-基因相互作用
J Comput Biol. 2015 Jun;22(6):563-76. doi: 10.1089/cmb.2014.0163. Epub 2015 Apr 14.
10
DISSCO: direct imputation of summary statistics allowing covariates.DISSCO:允许协变量的汇总统计量直接插补
Bioinformatics. 2015 Aug 1;31(15):2434-42. doi: 10.1093/bioinformatics/btv168. Epub 2015 Mar 24.

本文引用的文献

10
A haplotype map of the human genome.人类基因组单倍型图谱。
Nature. 2005 Oct 27;437(7063):1299-320. doi: 10.1038/nature04226.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验