Programa de Pós-graduação em Biometria, Universidade Estadual Paulista, 18618-000, Botucatu, SP, Brazil.
Bull Math Biol. 2011 Dec;73(12):2916-31. doi: 10.1007/s11538-011-9652-6. Epub 2011 Apr 6.
This paper presents a mathematical model for cholera epidemics which comprises seasonality, loss of host immunity, and control mechanisms acting to reduce cholera transmission. A collection of data related to cholera disease allows us to show that outbreaks in endemic areas are subject to a resonant behavior, since the intrinsic oscillation period of the disease (∼1 year) is synchronized with the annual contact rate variation. Moreover, we argue that the short period of the host immunity may be associated to secondary peaks of incidence observed in some regions (a bimodal pattern). Finally, we explore some possible mechanisms of cholera control, and analyze their efficiency. We conclude that, besides mass vaccination--which may be impracticable--improvements in sanitation system and food/personal hygiene are the most effective ways to prevent an epidemic.
本文提出了一个霍乱流行的数学模型,该模型包含季节性、宿主免疫丧失以及控制机制,这些机制可以减少霍乱的传播。与霍乱疾病相关的数据集合使我们能够表明,地方性地区的爆发受到共振行为的影响,因为疾病的固有振荡周期(约 1 年)与每年的接触率变化同步。此外,我们认为宿主免疫的短暂周期可能与某些地区观察到的发病率的二次峰值(双峰模式)有关。最后,我们探讨了一些可能的霍乱控制机制,并分析了它们的效率。我们的结论是,除了大规模疫苗接种(可能不可行)之外,改善卫生系统和食品/个人卫生是预防流行的最有效方法。