Stehouwer Jeffrey S., Chopra Arvind
Department of Radiology,, Center for Systems Imaging,, Emory University
National Center for Biotechnology Information, NLM, NIH, Bethesda, MD 20894
Dopamine, a neurotransmitter, is transported across the presynaptic neuron membranes (1, 2) by the dopamine transporter (DAT) and results in termination of the signaling action of the molecule (3). High densities of this transporter are present in certain regions of the brain, such as the putamen, caudate, nucleus accumbens, and the olfactory tubercle, whereas the substantia nigra, amygdala, and hypothalamus show comparatively low amounts of the DAT (4, 5). Negligible amounts of DATs are found in the cerebellum. The DAT has been implicated in several neuropsychiatric disorders including Parkinson’s disease (6-8), attention-deficit hyperactivity disorder (9), supranuclear palsy (10), Tourette’s syndrome (11), and cocaine addiction (12, 13). Because of the involvement of DAT in a variety of neurological disorders, positron emission tomography (PET) is often used for the non-invasive imaging to determine the density of DAT in different regions (12) and to visualize the localization of therapeutic drugs (14) and cocaine (15) in the brain. Therefore, the use of PET tracers is considered useful for the detection of neuropsychiatric diseases (including cocaine addiction) and to monitor the efficacy of drugs used to treat these conditions (16). To this end, several C-labeled 3β-phenyl tropane compounds were prepared and used for the imaging of the DAT; however, due to the short half-life of C (half-life ~20 min), the DAT imaging sessions with these PET tracers are limited to ~2 h (17). In addition, C produces high-energy positrons (maximum energy, 0.97 MeV) that have a long linear range and consequently generates low-resolution images. In an attempt to increase the resolution of PET images, investigators labeled some tropane-based DAT ligands with F (maximum energy, 0.64 MeV; half-life ~110 min) and evaluated the use of these radiolabeled compounds for the imaging of the DAT (17). However, these F-labeled tracers were determined to be unsuitable for the imaging of the DAT because they were either defluorinated or generated polar metabolites that crossed the blood–brain barrier and produced low signal/noise ratios, or they exhibited a higher affinity for the serotonin transporter (SERT) compared to the DAT, or they had a prolonged period for washout from the brain. In a continuing effort to produce F-labeled DAT-binding PET tracers, Stehouwer et al. synthesized a nortropane derivative, -(()-4-[F]fluorobut-2-en-1-yl)-2β-carbomethoxy-3β-(4’-fluorophenyl)nortropane ([F]FBFNT), and evaluated the radiolabel for the imaging of the DAT in an anesthetized cynomolgus monkey and in a conscious rhesus monkey (17).
多巴胺作为一种神经递质,通过多巴胺转运体(DAT)跨突触前神经元膜转运(1,2),从而终止该分子的信号传导作用(3)。这种转运体在大脑的某些区域高密度存在,如壳核、尾状核、伏隔核和嗅结节,而黑质、杏仁核和下丘脑的DAT含量相对较低(4,5)。在小脑中发现的DAT数量可忽略不计。DAT与多种神经精神疾病有关,包括帕金森病(6 - 8)、注意力缺陷多动障碍(9)、核上性麻痹(10)、图雷特综合征(11)和可卡因成瘾(12,13)。由于DAT参与多种神经系统疾病,正电子发射断层扫描(PET)常被用于非侵入性成像,以确定不同区域DAT的密度(12),并可视化治疗药物(14)和可卡因(15)在大脑中的定位。因此,PET示踪剂的使用被认为对检测神经精神疾病(包括可卡因成瘾)以及监测用于治疗这些疾病的药物疗效很有用(16)。为此,制备了几种碳标记的3β - 苯基托烷化合物并用于DAT成像;然而,由于碳的半衰期短(半衰期约20分钟),使用这些PET示踪剂进行DAT成像的时间限制在约2小时(17)。此外,碳产生高能正电子(最大能量为0.97 MeV),其线性范围长,因此产生的图像分辨率低。为了提高PET图像的分辨率,研究人员用氟(最大能量为0.64 MeV;半衰期约110分钟)标记了一些基于托烷的DAT配体,并评估了这些放射性标记化合物用于DAT成像的情况(17)。然而,这些氟标记的示踪剂被确定不适合用于DAT成像,因为它们要么脱氟,要么产生穿过血脑屏障并产生低信噪比的极性代谢物,要么与DAT相比,它们对5-羟色胺转运体(SERT)表现出更高的亲和力,要么它们从大脑中清除的时间延长。为了持续努力生产氟标记的DAT结合PET示踪剂,斯特豪威尔等人合成了一种降托烷衍生物,-(()-4-[F]氟丁-2-烯-1-基)-2β-甲氧羰基-3β-(4'-氟苯基)降托烷([F]FBFNT),并在麻醉的食蟹猴和清醒的恒河猴中评估了该放射性标记用于DAT成像的情况(17)。