Unit of Translational Research, Catalan Institute of Oncology-Girona, Girona, Spain.
Cell Cycle. 2011 Apr 15;10(8):1295-302. doi: 10.4161/cc.10.8.15342.
AMP-activated protein kinase (AMPK) is being primarily studied as a central metabolic stress sensor, which regulates cell survival and growth-related metabolic pathways to preserve intracellular ATP levels in response to energy deprivation. Evidence is now accumulating that AMPK plays also an obligatory role to ensure proper cell division and faithful chromosomal segregation during mitosis. Increased phosphorylation in the AMPK catalytic subunit (AMPKα) was found in a proteomic study for kinases activated during G2/M and, more recently, activated AMPKα (PP-AMPKα(Thr172)) has been observed to transiently associate with several mitotic structures including centrosomes, spindle poles, the central spindle midzone and the midbody throughout all of the mitotic stages and cytokinesis. How AMPKα activation is controlled spatially and temporally during mitosis, however, remained undiscovered. Because Polo-like Kinases (PLKs) regulate many aspects of mitotic progression including centrosome maturation, bipolar spindle assembly, chromosome congression & segregation, and cytokinesis, we decided to combine an immunofluorescence microscopy analysis with a chemical biology approach employing a small-molecule PLK1 inhibitor to dissect a putative relationship between PLK1 and AMPKα during G2/M transition. PLK1 and PP-AMPKα(Thr172) were found to display a major spatio-temporal overlap early at centrosomes, from prophase until anaphase, and late at the midbody, during telophase and cytokinesis. Moreover, short-term treatment with the thiophene derivative GW843682X, a selective PLK inhibitor that has 400-fold greater potency for PLK1 than for PLK2 or PLK3, fully abolished mitotic activation of AMPKα. Upon long-term PLK1 inhibition, PP-AMPKα(Thr172) was barely detected surrounding the spindle poles of prometaphase-like arrested cells displaying the "polo" phenotype. Similarly, PP-AMPKα(Thr172) was largely inhibited in GW843682X-treated cells exhibiting cytokinesis failure and binucleate cell formation. Given that PLK1 is a well-recognized master regulatory kinase for the numerous protein substrates involved in mitosis, our current description of a causal link between PLK1 activity and mitotic phosphorylation of AMPKα may provide fundamental insights into how the energy sensor AMPK is directly coupled to mitotic cell division and cell cycle exist.
AMP 激活的蛋白激酶 (AMPK) 主要作为中央代谢应激传感器进行研究,它调节细胞存活和生长相关代谢途径,以响应能量剥夺来维持细胞内 ATP 水平。现在有证据表明,AMPK 在有丝分裂期间确保适当的细胞分裂和忠实的染色体分离中也起着强制性作用。在 G2/M 期间激活的激酶的蛋白质组学研究中发现 AMPK 催化亚基(AMPKα)的磷酸化增加,最近观察到活化的 AMPKα(PP-AMPKα(Thr172))在整个有丝分裂阶段和胞质分裂过程中短暂与几种有丝分裂结构(包括中心体、纺锤体极、中央纺锤体中间区和中体)相关联。然而,AMPKα 在有丝分裂期间的时空激活如何受到控制仍然未知。由于 Polo 样激酶 (PLK) 调节有丝分裂进展的许多方面,包括中心体成熟、双极纺锤体组装、染色体向心和分离以及胞质分裂,我们决定将免疫荧光显微镜分析与化学生物学方法相结合,使用小分子 PLK1 抑制剂来剖析 G2/M 过渡期间 PLK1 和 AMPKα 之间的潜在关系。发现 PLK1 和 PP-AMPKα(Thr172) 在中心体上早期表现出主要的时空重叠,从早前期到后期,在后期和胞质分裂过程中晚期在中体上。此外,短期用噻吩衍生物 GW843682X 处理,一种选择性的 PLK1 抑制剂,对 PLK1 的效力比 PLK2 或 PLK3 高 400 倍,完全消除了 AMPKα 的有丝分裂激活。长期抑制 PLK1 后,在具有“ polo”表型的类似于前期的停滞细胞的纺锤体极周围几乎检测不到 PP-AMPKα(Thr172)。同样,GW843682X 处理的细胞中 PP-AMPKα(Thr172) 也受到很大抑制,这些细胞表现出胞质分裂失败和双核细胞形成。鉴于 PLK1 是参与有丝分裂的众多蛋白质底物的公认的主调节激酶,我们当前描述的 PLK1 活性与 AMPKα 有丝分裂磷酸化之间的因果关系可能为能量传感器 AMPK 如何直接与有丝分裂细胞分裂和细胞周期存在相关提供了基本的见解。