J Chem Phys. 2011 Apr 7;134(13):137101. doi: 10.1063/1.3575197.
To resolve the disagreement between two calculations for the hopping time divergence exponent of two diffusing hard disks in a narrow channel, Kalinay and Percus propose that the definitions of the hopping time used in the two calculations are not equivalent, which resulted in different exponents. The first is the mean first passage time (MFPT) and is related to the survival probability function S(t) at long time. Bowles, Mon, and Percus solve an approximate Fick-Jacobs equation to produce a MFPT exponent of -3∕2. The second is defined by Kalinay and Percus in terms of the short time relaxation of S(t). Kalinay and Percus claim that Mon and Percus used the short time relaxation of the survival function to obtain an exponent of -2 in the numerical solution of the diffusion equation. This is not an accurate description of the Mon and Percus method. To the contrary, the method of Mon and Percus is designed to extract the longest relaxation time constant. In this comment, I discuss this misunderstanding of Kalinay and Percus and show that the explanation for the disagreement with the approximate Fick-Jacob equation predictions is not in the difference of the definitions for the hopping time.
为了解决在狭窄通道中两个扩散硬磁盘的跳跃时间发散指数的两种计算方法之间的分歧,卡利纳伊和珀塞斯提出,两种计算方法中使用的跳跃时间的定义并不等效,这导致了不同的指数。第一个是平均首次通过时间(MFPT),与长时间的生存概率函数 S(t)有关。鲍尔斯、蒙和珀塞斯通过求解一个近似的菲克-雅可比方程得到了 -3∕2 的 MFPT 指数。第二个由卡利纳伊和珀塞斯根据 S(t)的短时间松弛来定义。卡利纳伊和珀塞斯声称,蒙和珀塞斯在扩散方程的数值解中使用生存函数的短时间松弛来获得 -2 的指数。这并不是对蒙和珀塞斯方法的准确描述。相反,蒙和珀塞斯的方法旨在提取最长的松弛时间常数。在这篇评论中,我讨论了卡利纳伊和珀塞斯的这种误解,并表明,与近似菲克-雅可比方程预测的分歧的解释不在于跳跃时间的定义的差异。