Suppr超能文献

血小板嘌呤能受体的药物化学。

Pharmacochemistry of the platelet purinergic receptors.

机构信息

Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC, Bethesda, MD, 20892-0810, USA,

出版信息

Purinergic Signal. 2011 Sep;7(3):305-24. doi: 10.1007/s11302-011-9216-0. Epub 2011 Feb 18.

Abstract

Platelets contain at least five purinergic G protein-coupled receptors, e.g., the pro-aggregatory P2Y(1) and P2Y(12) receptors, a P2Y(14) receptor (GPR105) of unknown function, and anti-aggregatory A(2A) and A(2B) adenosine receptor (ARs), in addition to the ligand-gated P2X1 ion channel. Probing the structure-activity relationships (SARs) of the P2X and P2Y receptors for extracellular nucleotides has resulted in numerous new agonist and antagonist ligands. Selective agents derived from known ligands and novel chemotypes can be used to help define the subtypes pharmacologically. Some of these agents have entered into clinical trials in spite of the challenges of drug development for these classes of receptors. The functional architecture of P2 receptors was extensively explored using mutagenesis and molecular modeling, which are useful tools in drug discovery. In general, novel drug delivery methods, prodrug approaches, allosteric modulation, and biased agonism would be desirable to overcome side effects that tend to occur even with receptor subtype-selective ligands. Detailed SAR analyses have been constructed for nucleotide and non-nucleotide ligands at the P2Y(1), P2Y(12), and P2Y(14) receptors. The thienopyridine antithrombotic drugs Clopidogrel and Prasugrel require enzymatic pre-activation in vivo and react irreversibly with the P2Y(12) receptor. There is much pharmaceutical development activity aimed at identifying reversible P2Y(12) receptor antagonists. The screening of chemically diverse compound libraries has identified novel chemotypes that act as competitive, non-nucleotide antagonists of the P2Y(1) receptor or the P2Y(12) receptor, and antithrombotic properties of the structurally optimized analogues were demonstrated. In silico screening at the A(2A) AR has identified antagonist molecules having novel chemotypes. Fluorescent and other reporter groups incorporated into ligands can enable new technology for receptor assays and imaging. The A(2A) agonist CGS21680 and the P2Y(1) receptor antagonist MRS2500 were derivatized for covalent attachment to polyamidoamine dendrimeric carriers of MW 20,000, and the resulting multivalent conjugates inhibited ADP-promoted platelet aggregation. In conclusion, a wide range of new pharmacological tools is available to control platelet function by interacting with cell surface purine receptors.

摘要

血小板含有至少五种嘌呤能 G 蛋白偶联受体,例如促聚集的 P2Y(1)和 P2Y(12)受体、功能未知的 P2Y(14)受体 (GPR105),以及抗聚集的 A(2A)和 A(2B)腺苷受体 (AR),此外还有配体门控的 P2X1 离子通道。对细胞外核苷酸的 P2X 和 P2Y 受体的结构-活性关系 (SAR) 的研究导致了许多新的激动剂和拮抗剂配体的出现。源自已知配体和新型化学型的选择性试剂可用于帮助药理学上定义亚型。尽管这些受体类别的药物开发具有挑战性,但其中一些试剂已进入临床试验。使用突变和分子建模广泛探索了 P2 受体的功能结构,这是药物发现的有用工具。一般来说,需要使用新型药物递送方法、前药方法、变构调节和偏向激动作用来克服即使使用受体亚型选择性配体也往往会出现的副作用。已经构建了 P2Y(1)、P2Y(12)和 P2Y(14)受体的核苷酸和非核苷酸配体的详细 SAR 分析。噻吩并吡啶抗血栓药物氯吡格雷和普拉格雷在体内需要酶的预激活,并与 P2Y(12)受体不可逆反应。有许多旨在识别可逆 P2Y(12)受体拮抗剂的药物开发活动。对化学多样性化合物文库的筛选已经确定了新型化学型,它们作为 P2Y(1)受体或 P2Y(12)受体的竞争性、非核苷酸拮抗剂起作用,并且结构优化类似物具有抗血栓形成特性。在 A(2A)AR 的计算机筛选中,已经鉴定出具有新型化学型的拮抗剂分子。荧光和其他报告基团掺入配体中,可以为受体测定和成像提供新技术。A(2A)激动剂 CGS21680 和 P2Y(1)受体拮抗剂 MRS2500 被衍生为 MW 20,000 的聚酰胺胺树枝状载体的共价连接,所得多价缀合物抑制 ADP 促进的血小板聚集。总之,通过与细胞表面嘌呤受体相互作用,控制血小板功能的广泛的新型药理学工具已经可用。

相似文献

1
Pharmacochemistry of the platelet purinergic receptors.
Purinergic Signal. 2011 Sep;7(3):305-24. doi: 10.1007/s11302-011-9216-0. Epub 2011 Feb 18.
2
Medicinal chemistry of adenosine, P2Y and P2X receptors.
Neuropharmacology. 2016 May;104:31-49. doi: 10.1016/j.neuropharm.2015.12.001. Epub 2015 Dec 12.
3
Molecular recognition at adenine nucleotide (P2) receptors in platelets.
Semin Thromb Hemost. 2005 Apr;31(2):205-16. doi: 10.1055/s-2005-869526.
4
Molecular recognition at purine and pyrimidine nucleotide (P2) receptors.
Curr Top Med Chem. 2004;4(8):805-19. doi: 10.2174/1568026043450961.
5
Pharmacological characterization of P2Y receptor subtypes - an update.
Purinergic Signal. 2024 Apr;20(2):99-108. doi: 10.1007/s11302-023-09963-w. Epub 2023 Sep 12.
6
Pharmacological profiles of cloned mammalian P2Y-receptor subtypes.
Pharmacol Ther. 2006 Jun;110(3):415-32. doi: 10.1016/j.pharmthera.2005.08.014. Epub 2005 Oct 28.
8
Molecular pharmacology of P2Y receptor subtypes.
Biochem Pharmacol. 2021 May;187:114361. doi: 10.1016/j.bcp.2020.114361. Epub 2020 Dec 10.
10
Development of selective high affinity antagonists, agonists, and radioligands for the P2Y1 receptor.
Comb Chem High Throughput Screen. 2008 Jul;11(6):410-9. doi: 10.2174/138620708784911474.

引用本文的文献

1
Exploring bias in platelet P2Y signalling: Host defence versus haemostasis.
Br J Pharmacol. 2024 Feb;181(4):580-592. doi: 10.1111/bph.16191. Epub 2023 Aug 2.
3
Molecular Modeling Applied to the Discovery of New Lead Compounds for P2 Receptors Based on Natural Sources.
Front Pharmacol. 2020 Sep 29;11:01221. doi: 10.3389/fphar.2020.01221. eCollection 2020.
4
Hypoxia Modulates Platelet Purinergic Signalling Pathways.
Thromb Haemost. 2020 Feb;120(2):253-261. doi: 10.1055/s-0039-3400305. Epub 2019 Dec 13.
5
Recent Insights from Molecular Dynamics Simulations for G Protein-Coupled Receptor Drug Discovery.
Int J Mol Sci. 2019 Aug 29;20(17):4237. doi: 10.3390/ijms20174237.
7
Demystifying P2Y Receptor Ligand Recognition through Docking and Molecular Dynamics Analyses.
J Chem Inf Model. 2017 Dec 26;57(12):3104-3123. doi: 10.1021/acs.jcim.7b00528. Epub 2017 Nov 28.
9
Ligand binding to a G protein-coupled receptor captured in a mass spectrometer.
Sci Adv. 2017 Jun 16;3(6):e1701016. doi: 10.1126/sciadv.1701016. eCollection 2017 Jun.
10
New highly active antiplatelet agents with dual specificity for platelet P2Y1 and P2Y12 adenosine diphosphate receptors.
Eur J Med Chem. 2016 Jan 1;107:204-18. doi: 10.1016/j.ejmech.2015.10.055. Epub 2015 Nov 9.

本文引用的文献

1
Northern Ring Conformation of Methanocarba-Adenosine 5'-Triphosphate Required for Activation of P2X Receptors.
Drug Dev Res. 2004 Apr;61(4):227-232. doi: 10.1002/ddr.10381. Epub 2004 Sep 22.
2
Activity of Novel Adenine Nucleotide Derivatives as Agonists and Antagonists at Recombinant Rat P2X Receptors.
Drug Dev Res. 2000 Apr 1;49(4):253-259. doi: 10.1002/1098-2299(200004)49:4<253::AID-DDR4>3.0.CO;2-1. Epub 2000 Jun 12.
3
Purification and Recognition of Recombinant Mouse P2X(1) Receptors Expressed in a Baculovirus System.
Drug Dev Res. 2000 Sep 1;51(1):7-19. doi: 10.1002/1098-2299(20000901)51:1<7::AID-DDR2>3.0.CO;2-W. Epub 2000 Oct 16.
4
Activation and regulation of purinergic P2X receptor channels.
Pharmacol Rev. 2011 Sep;63(3):641-83. doi: 10.1124/pr.110.003129. Epub 2011 Jul 7.
5
Applying the pro-drug approach to afford highly bioavailable antagonists of P2Y(14).
Bioorg Med Chem Lett. 2011 Jul 15;21(14):4366-8. doi: 10.1016/j.bmcl.2010.12.113. Epub 2010 Dec 28.
6
Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity.
Adv Pharmacol. 2011;61:301-32. doi: 10.1016/B978-0-12-385526-8.00010-2.
7
Ebselen is a potent non-competitive inhibitor of extracellular nucleoside diphosphokinase.
Purinergic Signal. 2010 Dec;6(4):383-91. doi: 10.1007/s11302-010-9203-x. Epub 2010 Nov 3.
8
ADP ribose is an endogenous ligand for the purinergic P2Y1 receptor.
Mol Cell Endocrinol. 2011 Feb 10;333(1):8-19. doi: 10.1016/j.mce.2010.11.004. Epub 2010 Nov 19.
9
BF0801, a novel adenine derivative, inhibits platelet activation via phosphodiesterase inhibition and P2Y12 antagonism.
Thromb Haemost. 2010 Oct;104(4):845-57. doi: 10.1160/TH10-05-0285. Epub 2010 Aug 30.
10
Physiological implications of adenosine receptor-mediated platelet aggregation.
J Cell Physiol. 2011 Jan;226(1):46-51. doi: 10.1002/jcp.22379.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验