Chukhovskii Feliks
X-ray Diagnostics Methods, Institute of Crystallography RAN, Moscow, Russian Federation.
Acta Crystallogr A. 2011 May;67(Pt 3):200-9. doi: 10.1107/S0108767311003357. Epub 2011 Mar 10.
An attempt is made to go beyond the distorted-wave Born approximation addressed to the grazing-incidence small-angle X-ray (GISAX) scattering from a random rough surface. The integral wave equation adjusted with the Green function formalism is applied. To find out an asymptotic solution of the non-averaged integral wave equation in terms of the Green function formalism, the theoretical approach based on a self-consistent approximation for the X-ray wavefunction is elaborated. Such an asymptotic solution allows one to describe the reflected X-ray wavefield everywhere in the scattering (θ, ϕ) angular range, in particular below the critical angle θ(cr) for total external reflection (θ is the grazing scattering angle with the surface, ϕ is the azimuth scattering angle; θ(0) is the grazing incidence angle). Analytical expressions for the reflected GISAX specular and diffuse scattering waves are obtained using the statistical model of a random Gaussian surface in terms of the r.m.s. roughness and two-point cumulant correlation function. For specular scattering the conventional Fresnel expression multiplied by the Debye-Waller factor is obtained. For the reflected GISAX diffuse scattering the intensity of the R(dif)(θ, ϕ) scan is written in terms of the statistical scattering factor eta(theta, theta0) and Fourier transform of the two-point cumulant correlation function. To be specific for isotropic solid surfaces, the statistical scattering factor eta(theta, theta0) and Fourier transform of the two-point cumulant correlation function parametrically depend on the root-mean-square roughness σ [eta(theta, theta0) = 0 for σ = 0] and cumulant correlation length ℓ, respectively. The reflected R(dif)(θ, ϕ) scans are numerically simulated for the typical-valued {θ(0), σ, ℓ} parameters array.
人们试图超越针对随机粗糙表面掠入射小角X射线(GISAX)散射的扭曲波玻恩近似。应用了用格林函数形式调整的积分波动方程。为了根据格林函数形式找到非平均积分波动方程的渐近解,阐述了基于X射线波函数自洽近似的理论方法。这样的渐近解使得人们能够描述能够描述散射(θ,ϕ)角范围内各处的反射X射线波场,特别是在全外反射的临界角θ(cr)以下(θ是与表面的掠射散射角,ϕ是方位散射角;θ(0)是掠入射角)。利用随机高斯表面的统计模型,根据均方根粗糙度和两点累积相关函数,得到了反射GISAX镜面散射波和漫散射波的解析表达式。对于镜面散射,得到了乘以德拜-瓦勒因子的传统菲涅耳表达式。对于反射GISAX漫散射,R(dif)(θ, ϕ)扫描的强度是根据统计散射因子eta(theta, theta0)和两点累积相关函数的傅里叶变换来表示的。具体对于各向同性固体表面,统计散射因子eta(theta, theta0)和两点累积相关函数的傅里叶变换分别参数性地依赖于均方根粗糙度σ [当σ = 0时,eta(theta, theta0) = 0]和累积相关长度ℓ。针对典型值的{θ(0), σ, ℓ}参数阵列,对反射的R(dif)(θ, ϕ)扫描进行了数值模拟。