School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
Phys Chem Chem Phys. 2011 Jun 21;13(23):11002-15. doi: 10.1039/c0cp02342f. Epub 2011 Apr 12.
The gas-phase reactions of ozone with alkenes can be significant sources of free radicals (OH, HO(2) and RO(2)) in the Earth's atmosphere. In this study the total radical production and degradation products from ethene ozonolysis have been measured, under conditions relevant to the troposphere, during a series of detailed simulation chamber experiments. Experiments were carried out in the European photoreactor EUPHORE (Valencia, Spain), utilising various instrumentation including a chemical-ionisation-reaction time-of-flight mass-spectrometer (CIR-TOF-MS) measuring volatile organic compounds/oxygenated volatile organic compounds (VOCs/OVOCs), a laser induced fluorescence (LIF) system for measuring HO(2) radical products and a peroxy radical chemical amplification (PERCA) instrument measuring HO(2) + ΣRO(2). The ethene + ozone reaction system was investigated with and without an OH radical scavenger, in order to suppress side reactions. Radical concentrations were measured under dry and humid conditions and interpreted through detailed chemical chamber box modelling, incorporating the Master Chemical Mechanism (MCMv3.1) degradation scheme for ethene, which was updated to include a more explicit representation of the ethene-ozone reaction mechanism.The rate coefficient for the ethene + ozone reaction was measured to be (1.45 ± 0.25) × 10(-18) cm(3) molecules(-1) s(-1) at 298 K, and a stabilised Criegee intermediate yield of 0.54 ± 0.12 was determined from excess CO scavenger experiments. An OH radical yield of 0.17 ± 0.09 was determined using a cyclohexane scavenger approach, by monitoring the formation of the OH-initiated cyclohexane oxidation products and HO(2). The results highlight the importance of knowing the [HO(2)] (particularly under alkene limited conditions and high [O(3)]) and scavenger chemistry when deriving radical yields. An averaged HO(2) yield of 0.27 ± 0.07 was determined by LIF/model fitting. The observed yields are interpreted in terms of branching ratios for each channel within the postulated ethene ozonolysis mechanism.
臭氧与烯烃的气相反应可以成为地球大气中自由基(OH、HO₂和 RO₂)的重要来源。在这项研究中,在与对流层相关的条件下,通过一系列详细的模拟室实验,测量了乙烯臭氧化的总自由基生成和降解产物。实验在欧洲光反应器 EUPHORE(西班牙巴伦西亚)中进行,利用各种仪器,包括化学电离反应时间飞行质谱仪(CIR-TOF-MS)测量挥发性有机化合物/含氧挥发性有机化合物(VOCs/OVOCs)、用于测量 HO₂自由基产物的激光诱导荧光(LIF)系统和用于测量 HO₂+ΣRO₂的过氧自由基化学放大(PERCA)仪器。在有和没有 OH 自由基清除剂的情况下研究了乙烯+臭氧反应系统,以抑制副反应。在干燥和潮湿条件下测量自由基浓度,并通过详细的化学室箱模型进行解释,该模型包含乙烯的主化学机制(MCMv3.1)降解方案,该方案进行了更新,以更明确地表示乙烯-臭氧反应机制。在 298 K 时,测量得到乙烯+臭氧反应的速率系数为(1.45 ± 0.25)×10(-18)cm(3)molecules(-1)s(-1),并通过过量 CO 清除剂实验确定了稳定的 Criegee 中间体产率为 0.54 ± 0.12。通过环己烷清除剂方法,通过监测 OH 引发的环己烷氧化产物和 HO₂的形成,使用环己烷清除剂方法确定了 OH 自由基的产率为 0.17 ± 0.09。结果强调了当推导自由基产率时,了解[HO₂](特别是在烯烃有限条件和高[O₃]下)和清除剂化学的重要性。通过 LIF/模型拟合确定了平均 HO₂产率为 0.27 ± 0.07。观察到的产率根据假定的乙烯臭氧化机制中每个通道的分支比进行解释。