Suppr超能文献

HHH 疗法的计算建模及血压和红细胞压积的影响。

Computational modeling of HHH therapy and impact of blood pressure and hematocrit.

机构信息

Medical Center of Central Georgia, Macon, Georgia, USA.

出版信息

World Neurosurg. 2010 Aug-Sep;74(2-3):294-6. doi: 10.1016/j.wneu.2010.02.059.

Abstract

BACKGROUND

After an aneurysmal subarachnoid hemorrhage, cerebral microcirculatory changes occur as a result cerebral vasospasm. The objective of this study is to investigate, with a computational model, how various degrees of vasospasm are influenced by increasing the mean blood pressure and decreasing the blood viscosity.

METHODS

Using ANSYS CFX software, a computational model was constructed to simulate steady-state fully developed laminar blood flow through a rigid wall system consisting of the internal carotid artery (ICA), anterior cerebral artery, posterior cerebral artery, and middle cerebral artery (MCA). The MCA was selected for the site of a single acute vasospasm. Five severities of vasospasm were studied: 3 mm (normal), 2.5, 2, 1.5, and 1 mm. The ICA was assumed to have a constant inlet flow rate of 315 mL/min. The anterior cerebral artery and posterior cerebral artery were assumed to have constant outlet flow rates of 105 mL/min and 30 mL/min, respectively. The MCA was assumed to have a constant outlet pressure of 92 mL/min. Two different hematocrits, 45% and 32%, were simulated using the models.

RESULTS

For a hematocrit of 45, the mean ICA inlet pressure required to pump blood through the system was 104 mm Hg for the 3-mm diameter MCA and 105, 108, 116, and 158 mm Hg for vasospasm diameters of 2.5, 2, 1.5, and 1 mm, respectively. For a hematocrit of 32, the mean ICA inlet pressure required was 102, 103, 105, 113, and 152 mm Hg, respectively.

CONCLUSIONS

The MCA required a large increase in mean ICA inlet pressure for vasospasm diameters less than 1.5 mm, which suggests that for vasospasms more than 50% diameter reduction, the blood pressure must be increased dramatically. Decreasing the hematocrit had minimal impact on blood flow in a constricted vessel.

摘要

背景

在蛛网膜下腔出血后,由于脑血管痉挛,会发生脑微循环变化。本研究的目的是通过计算模型研究不同程度的血管痉挛如何受到增加平均血压和降低血液粘度的影响。

方法

使用 ANSYS CFX 软件,构建了一个计算模型,以模拟通过由颈内动脉(ICA)、大脑前动脉、大脑后动脉和大脑中动脉(MCA)组成的刚性壁系统的稳态充分发展层流血液流动。MCA 被选择用于单个急性血管痉挛的部位。研究了五种严重程度的血管痉挛:3mm(正常)、2.5、2、1.5 和 1mm。ICA 被假设具有恒定的入口流量为 315mL/min。大脑前动脉和大脑后动脉分别被假设具有恒定的出口流量为 105mL/min 和 30mL/min。MCA 被假设具有恒定的出口压力为 92mL/min。使用模型模拟了两种不同的血细胞比容,即 45%和 32%。

结果

对于血细胞比容为 45%,通过系统泵送血液所需的平均 ICA 入口压力对于 3mm 直径的 MCA 为 104mmHg,对于血管痉挛直径为 2.5、2、1.5 和 1mm 的 MCA 分别为 105、108、116 和 158mmHg。对于血细胞比容为 32%,所需的平均 ICA 入口压力分别为 102、103、105、113 和 152mmHg。

结论

MCA 对于小于 1.5mm 的血管痉挛直径需要较大的平均 ICA 入口压力增加,这表明对于血管痉挛直径减少超过 50%,血压必须急剧增加。降低血细胞比容对狭窄血管中的血流几乎没有影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验