文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种具有任意物种丰度比的宏基因组序列的健壮且准确的分箱算法。

A robust and accurate binning algorithm for metagenomic sequences with arbitrary species abundance ratio.

机构信息

Department of Computer Science, The University of Hong Kong, Hong Kong.

出版信息

Bioinformatics. 2011 Jun 1;27(11):1489-95. doi: 10.1093/bioinformatics/btr186. Epub 2011 Apr 14.


DOI:10.1093/bioinformatics/btr186
PMID:21493653
Abstract

MOTIVATION: With the rapid development of next-generation sequencing techniques, metagenomics, also known as environmental genomics, has emerged as an exciting research area that enables us to analyze the microbial environment in which we live. An important step for metagenomic data analysis is the identification and taxonomic characterization of DNA fragments (reads or contigs) resulting from sequencing a sample of mixed species. This step is referred to as 'binning'. Binning algorithms that are based on sequence similarity and sequence composition markers rely heavily on the reference genomes of known microorganisms or phylogenetic markers. Due to the limited availability of reference genomes and the bias and low availability of markers, these algorithms may not be applicable in all cases. Unsupervised binning algorithms which can handle fragments from unknown species provide an alternative approach. However, existing unsupervised binning algorithms only work on datasets either with balanced species abundance ratios or rather different abundance ratios, but not both. RESULTS: In this article, we present MetaCluster 3.0, an integrated binning method based on the unsupervised top--down separation and bottom--up merging strategy, which can bin metagenomic fragments of species with very balanced abundance ratios (say 1:1) to very different abundance ratios (e.g. 1:24) with consistently higher accuracy than existing methods. AVAILABILITY: MetaCluster 3.0 can be downloaded at http://i.cs.hku.hk/~alse/MetaCluster/.

摘要

动机:随着下一代测序技术的快速发展,宏基因组学,也称为环境基因组学,已经成为一个令人兴奋的研究领域,使我们能够分析我们生活的微生物环境。宏基因组数据分析的一个重要步骤是识别和分类学特征化来自混合物种样本测序的 DNA 片段(读取或 contigs)。这一步骤称为“分箱”。基于序列相似性和序列组成标记的分箱算法严重依赖于已知微生物或系统发育标记的参考基因组。由于参考基因组的有限可用性以及标记的偏差和低可用性,这些算法可能并不适用于所有情况。可以处理未知物种片段的无监督分箱算法提供了一种替代方法。然而,现有的无监督分箱算法仅适用于具有平衡物种丰度比或相当不同丰度比的数据集,但不适用于两者。

结果:在本文中,我们提出了 MetaCluster 3.0,这是一种基于无监督自上而下的分离和自下而上的合并策略的集成分箱方法,它可以对丰度比非常平衡(例如 1:1)到非常不同(例如 1:24)的物种的宏基因组片段进行分箱,其准确性始终高于现有方法。

可用性:MetaCluster 3.0 可在 http://i.cs.hku.hk/~alse/MetaCluster/ 下载。

相似文献

[1]
A robust and accurate binning algorithm for metagenomic sequences with arbitrary species abundance ratio.

Bioinformatics. 2011-4-14

[2]
Unsupervised binning of environmental genomic fragments based on an error robust selection of l-mers.

BMC Bioinformatics. 2010-4-16

[3]
MetaCluster 5.0: a two-round binning approach for metagenomic data for low-abundance species in a noisy sample.

Bioinformatics. 2012-9-15

[4]
A New Unsupervised Binning Approach for Metagenomic Sequences Based on N-grams and Automatic Feature Weighting.

IEEE/ACM Trans Comput Biol Bioinform. 2014

[5]
MBMC: An Effective Markov Chain Approach for Binning Metagenomic Reads from Environmental Shotgun Sequencing Projects.

OMICS. 2016-8

[6]
MetaCluster 4.0: a novel binning algorithm for NGS reads and huge number of species.

J Comput Biol. 2012-2

[7]
MetaCluster-TA: taxonomic annotation for metagenomic data based on assembly-assisted binning.

BMC Genomics. 2014-1-24

[8]
A novel abundance-based algorithm for binning metagenomic sequences using l-tuples.

J Comput Biol. 2011-3

[9]
TWARIT: an extremely rapid and efficient approach for phylogenetic classification of metagenomic sequences.

Gene. 2012-6-15

[10]
CoMet: a workflow using contig coverage and composition for binning a metagenomic sample with high precision.

BMC Bioinformatics. 2017-12-28

引用本文的文献

[1]
Solving genomic puzzles: computational methods for metagenomic binning.

Brief Bioinform. 2024-7-25

[2]
Metagenomic-based surveillance systems for antibiotic resistance in non-clinical settings.

Front Microbiol. 2022-12-2

[3]
Alignment-Free Sequence Analysis and Applications.

Annu Rev Biomed Data Sci. 2018-7

[4]
MetaCon: unsupervised clustering of metagenomic contigs with probabilistic k-mers statistics and coverage.

BMC Bioinformatics. 2019-11-22

[5]
A high-resolution genomic composition-based method with the ability to distinguish similar bacterial organisms.

BMC Genomics. 2019-10-21

[6]
FEAST: fast expectation-maximization for microbial source tracking.

Nat Methods. 2019-6-10

[7]
Metagenomics Investigation of Agarlytic Genes and Genomes in Mangrove Sediments in China: A Potential Repertory for Carbohydrate-Active Enzymes.

Front Microbiol. 2018-8-14

[8]
CoreProbe: A Novel Algorithm for Estimating Relative Abundance Based on Metagenomic Reads.

Genes (Basel). 2018-6-20

[9]
When old metagenomic data meet newly sequenced genomes, a case study.

PLoS One. 2018-6-14

[10]
Loeffler 4.0: Diagnostic Metagenomics.

Adv Virus Res. 2017-9-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索