University of Maribor, Faculty of Electrical Engineering and Computer Science, Maribor, Slovenia.
J Med Syst. 2012 Aug;36(4):2349-57. doi: 10.1007/s10916-011-9702-5. Epub 2011 Apr 15.
This paper introduces a new algorithm for losslessly compressing voxel-based 3D CT medical images. Firstly, medical data is segmented according to selected ranges of the Hounsfield scale. The data is then arranged into two data streams. The first stream identifies the positions of the remaining data after segmentation. This information is compressed by the JBIG standard. The second stream contains the exact data values and it is losslessly compressed by our algorithm. The efficiency of this approach has been evaluated by a prototype application. This approach represents an interesting alternative for the long-term storage of medical 2D and 3D images, and for applications in telemedicine. The compression method can be used either for 2D or 3D medical data.
本文提出了一种新的算法,用于无损压缩基于体素的 3D CT 医学图像。首先,根据选定的亨氏单位范围对医学数据进行分段。然后,将数据排列成两个数据流。第一数据流标识分段后剩余数据的位置。此信息由 JBIG 标准压缩。第二数据流包含确切的数据值,并通过我们的算法无损压缩。通过原型应用程序评估了这种方法的效率。这种方法为医学 2D 和 3D 图像的长期存储以及远程医疗应用提供了一种有趣的选择。该压缩方法可用于 2D 或 3D 医学数据。