Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States.
J Phys Chem A. 2011 Oct 20;115(41):11144-55. doi: 10.1021/jp2025939. Epub 2011 Apr 20.
We present a full molecular description of fragmentation reactions of protonated glycine (G) and its protonated dimer, H(+)G(2), by studying their collision-induced dissociation (CID) with Xe using a guided ion beam tandem mass spectrometer (GIBMS). In contrast to previous results, it is clear that H(+)G decomposes by loss of CO followed by H(2)O. Analysis of the energy-dependent CID cross sections provides the 0 K barriers for these processes as well as for the binding energy of the dimer after accounting for unimolecular decay rates, internal energy of reactant ions, and multiple ion-molecule collisions. Relaxed potential energy surface scans performed at the B3LYP/6-31G(d) level are used to map the reaction surfaces and identify the transition states (TSs) and intermediate reaction species for the reactions, structures that are further optimized at the B3LYP/6-311+G(d,p) level. Single-point energies of the key optimized structures are calculated at B3LYP and MP2(full) levels using a 6-311+G(2d,2p) basis set. These theoretical results are compared to extensive calculations in the literature and to the experimental energies. The combination of both experimental work and quantum chemical calculations allows for a complete characterization of the elementary steps of H(+)G and H(+)G(2) decomposition. These results make it clear that H(+)G is the simplest model for the ''mobile proton'', a key concept in understanding the fragmentation of protonated proteins.
我们通过使用引导离子束串联质谱仪(GIBMS)研究 Xe 与质子化甘氨酸(G)及其质子化二聚体 H(+)G(2)的碰撞诱导解离(CID),给出了它们的碎片反应的全分子描述。与之前的结果相比,很明显 H(+)G 通过失去 CO 然后是 H(2)O 分解。对能量依赖的 CID 截面的分析提供了这些过程的 0 K 势垒,以及在考虑单分子衰变率、反应物离子的内部能量和多个离子-分子碰撞后二聚体的结合能。在 B3LYP/6-31G(d)水平上进行的松弛势能面扫描用于绘制反应表面,并确定反应的过渡态(TS)和中间反应物种,这些结构在 B3LYP/6-311+G(d,p)水平上进一步优化。使用 6-311+G(2d,2p)基组,在 B3LYP 和 MP2(全)水平上计算关键优化结构的单点能。这些理论结果与文献中的广泛计算和实验能量进行了比较。实验工作和量子化学计算的结合允许对 H(+)G 和 H(+)G(2)分解的基本步骤进行完整的特征描述。这些结果清楚地表明,H(+)G 是理解质子化蛋白质碎片化的“移动质子”这一关键概念的最简单模型。