Suppr超能文献

基于土地利用特征预测溪流鱼类群落:对监测方案具有成本效益设计的启示。

Prediction of stream fish assemblages from land use characteristics: implications for cost-effective design of monitoring programmes.

机构信息

Department of Freshwater Ecology, National Environmental Research Institute, Aarhus University, Vejlsøvej 25, PO Box 314, 8600 Silkeborg, Denmark.

出版信息

Environ Monit Assess. 2012 Mar;184(3):1435-48. doi: 10.1007/s10661-011-2052-4. Epub 2011 Apr 21.

Abstract

Increasing human impact on stream ecosystems has resulted in a growing need for tools helping managers to develop conservations strategies, and environmental monitoring is crucial for this development. This paper describes the development of models predicting the presence of fish assemblages in lowland streams using solely cost-effective GIS-derived land use variables. Three hundred thirty-five stream sites were separated into two groups based on size. Within each group, fish abundance data and cluster analysis were used to determine the composition of fish assemblages. The occurrence of assemblages was predicted using a dataset containing land use variables at three spatial scales (50 m riparian corridor, 500 m riparian corridor and the entire catchment) supplemented by a dataset on in-stream variables. The overall classification success varied between 66.1-81.1% and was only marginally better when using in-stream variables than when applying only GIS variables. Also, the prediction power of a model combining GIS and in-stream variables was only slightly better than prediction based solely on GIS variables. The possibility of obtaining precise predictions without using costly in-stream variables offers great potential in the design of monitoring programmes as the distribution of monitoring sites along a gradient in ecological quality can be done at a low cost.

摘要

人类活动对溪流生态系统的影响不断增加,这使得人们越来越需要工具来帮助管理者制定保护策略,而环境监测对于这一发展至关重要。本文描述了使用仅具有成本效益的 GIS 衍生土地利用变量来开发预测低地溪流鱼类群落存在的模型的过程。将 335 个溪流站点根据大小分为两组。在每组中,使用鱼类丰度数据和聚类分析来确定鱼类群落的组成。使用包含三个空间尺度(50m 河岸带、500m 河岸带和整个流域)的土地利用变量数据集以及溪流变量数据集来预测群落的出现。总体分类成功率在 66.1%-81.1%之间变化,当仅使用 GIS 变量而不是同时使用 GIS 和溪流变量时,仅略有提高。此外,结合 GIS 和溪流变量的模型的预测能力仅略优于仅基于 GIS 变量的预测。在不使用昂贵的溪流变量的情况下获得精确预测的可能性为监测计划的设计提供了巨大的潜力,因为可以以低成本沿生态质量梯度布置监测站点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验