Suppr超能文献

基于差异表达模式的候选基因优先级排序,通过整合疾病特异性表达数据。

Differential expression pattern-based prioritization of candidate genes through integrating disease-specific expression data.

机构信息

College of Bioinformatics Science and Technology, Harbin Medical University, Heilongjiang, China.

出版信息

Genomics. 2011 Jul;98(1):64-71. doi: 10.1016/j.ygeno.2011.04.001. Epub 2011 Apr 15.

Abstract

Expression data can reveal subtle transcriptional changes that mediate the clinical phenotype of the disease resulting from interaction between genetic and environmental factors, which offers us a new perspective to prioritize candidate genes. Here, we proposed a novel differential expression pattern (DEP)-based approach integrating numerous disease-specific expression data sets for prioritizing candidate genes. Using breast cancer as a case study, we validated the efficiency of our approach through integrating 12 breast cancer-related expression data sets based on the leave-one-out cross-validation. Particularly, prioritization based on subtype-specific expression data sets could generate significantly higher performance. The performance could be continually improved with the increasing expression data sets regardless of platform heterogeneity. We further validated the robustness of this approach by application to prostate cancer. Additionally, our approach showed higher performance in comparison with other expression-based approaches and better capability of identification of less well-studied disease genes in comparison with other integration-based approaches.

摘要

表达数据可以揭示介导遗传和环境因素相互作用导致的疾病临床表型的细微转录变化,为我们优先考虑候选基因提供了新的视角。在这里,我们提出了一种新的基于差异表达模式(DEP)的方法,该方法整合了许多疾病特异性表达数据集,以优先考虑候选基因。我们以乳腺癌为例,通过基于留一法交叉验证整合 12 个与乳腺癌相关的表达数据集,验证了我们方法的效率。特别地,基于亚型特异性表达数据集的优先级排序可以产生更高的性能。无论平台异质性如何,随着表达数据集的增加,性能都可以持续提高。我们进一步通过应用于前列腺癌来验证该方法的稳健性。此外,与其他基于表达的方法相比,我们的方法表现出更高的性能,与其他基于整合的方法相比,更好地识别研究较少的疾病基因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验