Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
Biochemistry. 2011 Jun 14;50(23):5108-19. doi: 10.1021/bi200427h. Epub 2011 May 19.
The soil bacterium Rhodococcus jostii RHA1 contains two dye-decolorizing peroxidases (DyPs) named according to the subfamily they represent: DypA, predicted to be periplasmic, and DypB, implicated in lignin degradation. Steady-state kinetic studies of these enzymes revealed that they have much lower peroxidase activities than C- and D-type DyPs. Nevertheless, DypA showed 6-fold greater apparent specificity for the anthraquinone dye Reactive Blue 4 (k(cat)/K(m) = 12800 ± 600 M(-1) s(-1)) than either ABTS or pyrogallol, consistent with previously characterized DyPs. By contrast, DypB showed the greatest apparent specificity for ABTS (k(cat)/K(m) = 2000 ± 100 M(-1) s(-1)) and also oxidized Mn(II) (k(cat)/K(m) = 25.1 ± 0.1 M(-1) s(-1)). Further differences were detected using electron paramagnetic resonance (EPR) spectroscopy: while both DyPs contained high-spin (S = (5)/(2)) Fe(III) in the resting state, DypA had a rhombic high-spin signal (g(y) = 6.32, g(x) = 5.45, and g(z) = 1.97) while DypB had a predominantly axial signal (g(y) = 6.09, g(x) = 5.45, and g(z) = 1.99). Moreover, DypA reacted with H(2)O(2) to generate an intermediate with features of compound II (Fe(IV)═O). By contrast, DypB reacted with H(2)O(2) with a second-order rate constant of (1.79 ± 0.06) × 10(5) M(-1) s(-1) to generate a relatively stable green-colored intermediate (t(1/2) ∼ 9 min). While the electron absorption spectrum of this intermediate was similar to that of compound I of plant-type peroxidases, its EPR spectrum was more consistent with a poorly coupled protein-based radical than with an Fe(IV)═O Por(•) species. The X-ray crystal structure of DypB, determined to 1.4 Å resolution, revealed a hexacoordinated heme iron with histidine and a solvent species occupying axial positions. A solvent channel potentially provides access to the distal face of the heme for H(2)O(2). A shallow pocket exposes heme propionates to the solvent and contains a cluster of acidic residues that potentially bind Mn(II). Insight into the structure and function of DypB facilitates its engineering for the improved degradation of lignocellulose.
土壤细菌 Rhodococcus jostii RHA1 含有两种染料脱色过氧化物酶(DyP),根据它们所属的亚家族命名:DypA,预测为周质,DypB,参与木质素降解。对这些酶的稳态动力学研究表明,它们的过氧化物酶活性远低于 C 型和 D 型 DyP。然而,DypA 对蒽醌染料反应蓝 4 的表观特异性高出 6 倍(kcat/Km = 12800 ± 600 M-1 s-1),高于 ABTS 或焦儿茶酚,与先前表征的 DyP 一致。相比之下,DypB 对 ABTS 的表观特异性最大(kcat/Km = 2000 ± 100 M-1 s-1),也氧化 Mn(II)(kcat/Km = 25.1 ± 0.1 M-1 s-1)。通过电子顺磁共振(EPR)光谱检测到进一步的差异:尽管两种 DyP 在静息状态下都含有高自旋(S = (5)/(2))Fe(III),但 DypA 具有菱形高自旋信号(g(y) = 6.32、g(x) = 5.45 和 g(z) = 1.97),而 DypB 具有主要的轴向信号(g(y) = 6.09、g(x) = 5.45 和 g(z) = 1.99)。此外,DypA 与 H2O2 反应生成具有化合物 II(Fe(IV)═O)特征的中间产物。相比之下,DypB 与 H2O2 以(1.79 ± 0.06)×10(5) M-1 s-1 的二级反应速率常数反应,生成相对稳定的绿色中间产物(t1/2 ∼ 9 min)。虽然该中间产物的电子吸收光谱类似于植物型过氧化物酶的化合物 I,但它的 EPR 光谱更符合结合不良的基于蛋白质的自由基,而不是 [Fe(IV)═O Por(•)]+物种。DypB 的 X 射线晶体结构解析至 1.4 Å 分辨率,揭示了一个六配位血红素铁,带有组氨酸和一个溶剂分子占据轴向位置。一个溶剂通道可能为 H2O2 提供到达血红素远端表面的通道。一个浅口袋将血红素丙酸酯暴露于溶剂中,并包含一组可能结合 Mn(II)的酸性残基。对 DypB 的结构和功能的深入了解有助于其工程设计,以提高木质纤维素的降解效率。