Fuels and Energy Technology Institute, Curtin University, Perth, WA 6845, Australia.
Phys Chem Chem Phys. 2011 Jun 7;13(21):10249-57. doi: 10.1039/c1cp20076c. Epub 2011 May 3.
A novel proton exchange membrane using phosphotungstic acid (HPW) as proton carrier and cubic bicontinuous Ia3d mesoporous silica (meso-silica) as framework material is successfully developed as proton exchange membranes for fuel cells. Meso-silica is functionalized by 80wt% HPW using a vacuum impregnation method. The HPW-functionalized meso-silica (HPW-meso-silica) nanocomposites are characterized by transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), N(2) adsorption/desorption isotherms, thermogravimetric analysis (TGA), water uptake and four-probe conductivity. The results show that the mesoporous structure of silica hosts can be altered by the hydrothermal temperature. Conductivity measurements indicate that meso-silica host with pore diameter of 5.0 nm has the highest proton conductivity of 0.11 S cm(-1) at 80 °C and 100% relative humidity (RH) with an activation energy of ∼14 kJ mol(-1) and better stability as compared to that with large mesopores. The proton conductivity and performance of HPW-meso-silica nanocomposites also increase with the RH, but it is far less sensitive to RH changes as compared to conventional perfluorosulfonic acid (PFSA) polymers such as Nafion. The maximum power density of the cell with HPW-meso-silcia nanocomposite membranes is 221 mW cm(-2) at 80 °C and 100% RH and decreases to 171 mW cm(-2) when RH is reduced to 20%, a 20% decrease in power output. In the case of a cell with Nafion 115 membranes, the decrease in power density is 95% under identical test conditions. The results demonstrate that the HPW-meso-silica nanocomposite has an exceptionally high water retention capability and is a promising proton exchange membrane material for fuel cells operating at reduced humidity and elevated temperatures.
一种新型质子交换膜,以磷钨酸(HPW)作为质子载体,以立方双连续 Ia3d 介孔硅(meso-硅)作为骨架材料,成功地开发为用于燃料电池的质子交换膜。meso-硅通过真空浸渍法用 80wt%的 HPW 功能化。用透射电子显微镜(TEM)、小角 X 射线散射(SAXS)、N 2 吸附/解吸等温线、热重分析(TGA)、吸水率和四探针电导率对 HPW-介孔硅(HPW-meso-硅)纳米复合材料进行了表征。结果表明,介孔硅的介孔结构可以通过水热处理温度进行改变。电导率测量表明,在 80°C 和 100%相对湿度(RH)下,具有 5.0nm 孔径的介孔硅主体具有最高的质子电导率为 0.11 S cm -1 ,活化能约为 14 kJ mol -1 ,稳定性优于具有大介孔的介孔硅主体。与传统的全氟磺酸(PFSA)聚合物如 Nafion 相比,HPW-meso-硅纳米复合材料的质子电导率和性能也随 RH 的增加而增加,但对 RH 变化的敏感性要低得多。在 80°C 和 100% RH 下,具有 HPW-meso-硅纳米复合材料膜的电池的最大功率密度为 221 mW cm -2 ,当 RH 降低到 20%时,功率输出降低到 171 mW cm -2 ,降低了 20%。在使用 Nafion 115 膜的电池的情况下,在相同的测试条件下,功率密度降低了 95%。结果表明,HPW-meso-硅纳米复合材料具有极高的保水能力,是一种在低湿度和高温下运行的燃料电池用有前途的质子交换膜材料。