Department of Neurology with Friedrich-Baur-Institute, Klinikum Großhadern, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich, Germany.
Acta Neuropathol. 2011 Jul;122(1):75-86. doi: 10.1007/s00401-011-0828-9. Epub 2011 May 4.
Dopaminergic (DA) neuron degeneration is a feature of brain aging but is markedly increased in patients with Parkinson's disease (PD). Recent data indicate elevated metabolic stress as a possible explanation for DA neuron vulnerability. Using laser capture microdissection, we isolated DA neurons from the substantia nigra pars compacta of PD patients, age-matched and young controls to determine transcriptional changes by expression profiling and pathway analysis. We verified our findings by comparison to a published dataset. Parallel processing of isolated neurons and bulk tissue allowed the discrimination of neuronal and glial transcription signals. Our data show that genes known to be involved in neural plasticity, axon and synaptic function, as well as cell fate are differentially regulated in aging DA neurons. The transcription patterns in aging suggest a largely maintained expression of genes in energy-related pathways in surviving neurons, possibly supported by the mediation of PPAR/RAR and CREB signaling. In contrast, a profound down-regulation of genes coding for mitochondrial and ubiquitin--proteasome system proteins was seen in PD when compared to the age-matched controls. This is in accordance with the established mitochondrial dysfunction in PD and provides evidence for mitochondrial impairment at the transcriptional level. In addition, the PD neurons had disrupted pathways that comprise a network involved in the control of energy metabolism and cell survival in response to growth factors, oxidative stress, and nutrient deprivation (PI3K/Akt, mTOR, eIF4/p70S6K and Hif-1α). PI3K/Akt and mTOR signaling are central hubs of this network which is of relevance to longevity and--together with induction of mitochondrial biogenesis--may constitute potential targets for therapeutic intervention.
多巴胺能(DA)神经元退化是大脑衰老的一个特征,但在帕金森病(PD)患者中明显增加。最近的数据表明,代谢应激升高可能是 DA 神经元易损性的一个解释。使用激光捕获显微切割,我们从 PD 患者、年龄匹配的和年轻的对照组的黑质致密部中分离出 DA 神经元,通过表达谱和途径分析来确定转录变化。我们通过与已发表的数据集进行比较来验证我们的发现。对分离神经元和大块组织的平行处理允许区分神经元和神经胶质转录信号。我们的数据表明,已知参与神经可塑性、轴突和突触功能以及细胞命运的基因在衰老的 DA 神经元中受到差异调节。衰老的转录模式表明,在幸存神经元中,能量相关途径的基因表达在很大程度上得到维持,这可能得到了 PPAR/RAR 和 CREB 信号的介导。相比之下,与年龄匹配的对照组相比,PD 中编码线粒体和泛素-蛋白酶体系统蛋白的基因表达显著下调。这与 PD 中已建立的线粒体功能障碍一致,并为转录水平的线粒体损伤提供了证据。此外,PD 神经元的通路被打乱,这些通路构成了一个网络,涉及到能量代谢和细胞存活的控制,以应对生长因子、氧化应激和营养剥夺(PI3K/Akt、mTOR、eIF4/p70S6K 和 Hif-1α)。PI3K/Akt 和 mTOR 信号是该网络的核心枢纽,与长寿有关,并且与诱导线粒体生物发生一起,可能构成治疗干预的潜在靶点。