Suppr超能文献

碳链分子在单壁碳纳米管中的包裹。

Encapsulation of carbon chain molecules in single-walled carbon nanotubes.

机构信息

Department of Physics, Yokohama National University, Yokohama, Japan.

出版信息

J Phys Chem A. 2011 May 26;115(20):5147-56. doi: 10.1021/jp109308w. Epub 2011 May 4.

Abstract

The vacuum space inside carbon nanotubes offers interesting possibilities for the inclusion, transportation, and functionalization of foreign molecules. Using first-principles density functional calculations, we show that linear carbon-based chain molecules, namely, polyynes (C(m)H(2), m = 4, 6, 10) and the dehydrogenated forms C(10)H and C(10), as well as hexane (C(6)H(14)), can be spontaneously encapsulated in open-ended single-walled carbon nanotubes (SWNTs) with edges that have dangling bonds or that are terminated with hydrogen atoms, as if they were drawn into a vacuum cleaner. The energy gains when C(10)H(2), C(10)H, C(10), C(6)H(2), C(4)H(2), and C(6)H(14) are encapsulated inside a (10,0) zigzag-shaped SWNT are 1.48, 2.04, 2.18, 1.05, 0.55, and 1.48 eV, respectively. When these molecules come inside a much wider (10,10) armchair SWNT along the tube axis, they experience neither an energy gain nor an energy barrier. They experience an energy gain when they approach the tube walls inside. Three hexane molecules can be encapsulated parallel to each other (i.e., nested) inside a (10,10) SWNT, and their energy gain is 1.98 eV. Three hexane molecules can exhibit a rotary motion. One reason for the stability of carbon chain molecules inside SWNTs is the large area of weak wave function overlap. Another reason concerns molecular dependence, that is, the quadrupole-quadrupole interaction in the case of the polyynes and electron charge transfer from the SWNT in the case of the dehydrogenated forms. The very flat potential surface inside an SWNT suggests that friction is quite low, and the space inside SWNTs serves as an ideal environment for the molecular transport of carbon chain molecules. The present theoretical results are certainly consistent with recent experimental results. Moreover, the encapsulation of C(10) makes an SWNT a (purely carbon-made) p-type acceptor. Another interesting possibility associated with the present system is the direction-controlled transport of C(10)H inside an SWNT under an external field. Because C(10)H has an electric dipole moment, it is expected to move under a gradient electric field. Finally, we derive the entropies of linear chain molecules inside and outside an open-ended SWNT to discuss the stability of including linear chain molecules inside an SWNT at finite temperatures.

摘要

碳纳米管内部的真空空间为包括、运输和功能化外来分子提供了有趣的可能性。我们使用第一性原理密度泛函计算表明,线性碳基链分子,即炔烃(C(m)H(2),m = 4、6、10)和脱氢形式的 C(10)H 和 C(10),以及己烷(C(6)H(14)),可以自发地被封入具有悬空键或被氢原子终止的开口单壁碳纳米管(SWNT)中,就好像它们被吸入吸尘器一样。当 C(10)H(2)、C(10)H、C(10)、C(6)H(2)、C(4)H(2)和 C(6)H(14)被封入(10,0)型锯齿形 SWNT 内部时,它们的能量增益分别为 1.48、2.04、2.18、1.05、0.55 和 1.48eV。当这些分子沿着管轴进入更宽的(10,10)扶手椅 SWNT 时,它们既不会获得能量也不会遇到能量屏障。当它们接近管壁时,它们会获得能量。三个己烷分子可以彼此平行(即嵌套)地被封入(10,10)SWNT 内部,它们的能量增益为 1.98eV。三个己烷分子可以表现出旋转运动。碳链分子在 SWNT 内部稳定的一个原因是弱波函数重叠的面积较大。另一个原因与分子依赖性有关,即在炔烃的情况下是四极矩-四极矩相互作用,在脱氢形式的情况下是电子电荷从 SWNT 转移。SWNT 内部非常平坦的势能表面表明摩擦非常低,SWNT 内部的空间是碳链分子分子传输的理想环境。目前的理论结果与最近的实验结果肯定是一致的。此外,C(10)的封装使 SWNT 成为(纯碳制成)p 型受体。与本系统相关的另一个有趣的可能性是在外场作用下控制 C(10)H 在 SWNT 内部的定向传输。由于 C(10)H 具有偶极矩,预计它将在梯度电场下移动。最后,我们推导出开口 SWNT 内外线性链分子的熵,以讨论在有限温度下将线性链分子包含在 SWNT 内部的稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验