Suppr超能文献

马铃薯 Y 病毒助病毒蛋白酶自身催化半胱氨酸蛋白酶结构域。

Structure of the autocatalytic cysteine protease domain of potyvirus helper-component proteinase.

机构信息

State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.

出版信息

J Biol Chem. 2011 Jun 17;286(24):21937-43. doi: 10.1074/jbc.M111.230706. Epub 2011 May 4.

Abstract

The helper-component proteinase (HC-Pro) of potyvirus is involved in polyprotein processing, aphid transmission, and suppression of antiviral RNA silencing. There is no high resolution structure reported for any part of HC-Pro, hindering mechanistic understanding of its multiple functions. We have determined the crystal structure of the cysteine protease domain of HC-Pro from turnip mosaic virus at 2.0 Å resolution. As a protease, HC-Pro only cleaves a Gly-Gly dipeptide at its own C terminus. The structure represents a postcleavage state in which the cleaved C terminus remains tightly bound at the active site cleft to prevent trans activity. The structure adopts a compact α/β-fold, which differs from papain-like cysteine proteases and shows weak similarity to nsP2 protease from Venezuelan equine encephalitis alphavirus. Nevertheless, the catalytic cysteine and histidine residues constitute an active site that is highly similar to these in papain-like and nsP2 proteases. HC-Pro recognizes a consensus sequence YXVGG around the cleavage site between the two glycine residues. The structure delineates the sequence specificity at sites P1-P4. Structural modeling and covariation analysis across the Potyviridae family suggest a tryptophan residue accounting for the glycine specificity at site P1'. Moreover, a surface of the protease domain is conserved in potyvirus but not in other genera of the Potyviridae family, likely due to extra functional constrain. The structure provides insight into the catalysis mechanism, cis-acting mode, cleavage site specificity, and other functions of the HC-Pro protease domain.

摘要

马铃薯 Y 病毒属的辅助成分蛋白酶(HC-Pro)参与多蛋白加工、蚜虫传播和抗病毒 RNA 沉默抑制。目前尚未报道 HC-Pro 任何部分的高分辨率结构,这阻碍了对其多种功能的机制理解。我们已确定了芜菁花叶病毒 HC-Pro 的半胱氨酸蛋白酶结构域的晶体结构,分辨率为 2.0Å。作为蛋白酶,HC-Pro 仅在其自身 C 末端切割一个 Gly-Gly 二肽。该结构代表了切割后状态,其中切割的 C 末端仍紧密结合在活性位点裂缝中,以防止反式活性。该结构采用紧凑的α/β折叠,与木瓜蛋白酶样半胱氨酸蛋白酶不同,与委内瑞拉马脑炎甲型病毒的 nsP2 蛋白酶显示出较弱的相似性。然而,催化半胱氨酸和组氨酸残基构成了一个与木瓜蛋白酶样和 nsP2 蛋白酶高度相似的活性位点。HC-Pro 识别位于两个甘氨酸残基之间切割位点附近的共有序列 YXVGG。该结构描绘了 P1-P4 位点的序列特异性。对整个马铃薯 Y 病毒科家族的结构建模和共变分析表明,一个色氨酸残基解释了 P1'位点甘氨酸的特异性。此外,蛋白酶结构域的一个表面在马铃薯 Y 病毒属中保守,但在马铃薯 Y 病毒科的其他属中不保守,可能是由于额外的功能约束。该结构提供了对 HC-Pro 蛋白酶结构域的催化机制、顺式作用模式、切割位点特异性和其他功能的深入了解。

相似文献

1
Structure of the autocatalytic cysteine protease domain of potyvirus helper-component proteinase.
J Biol Chem. 2011 Jun 17;286(24):21937-43. doi: 10.1074/jbc.M111.230706. Epub 2011 May 4.
2
Kinetic, Mutational, and Structural Studies of the Venezuelan Equine Encephalitis Virus Nonstructural Protein 2 Cysteine Protease.
Biochemistry. 2016 May 31;55(21):3007-19. doi: 10.1021/acs.biochem.5b00992. Epub 2016 May 19.
3
The crystal structure of the Venezuelan equine encephalitis alphavirus nsP2 protease.
Structure. 2006 Sep;14(9):1449-58. doi: 10.1016/j.str.2006.07.010.
5
Requirement for HC-Pro processing during genome amplification of tobacco etch potyvirus.
Virology. 1995 May 10;209(1):268-73. doi: 10.1006/viro.1995.1254.
6
Mutation of Asn-475 in the Venezuelan Equine Encephalitis Virus nsP2 Cysteine Protease Leads to a Self-Inhibited State.
Biochemistry. 2017 Nov 28;56(47):6221-6230. doi: 10.1021/acs.biochem.7b00746. Epub 2017 Nov 9.
8
The 3C-like proteinase of an invertebrate nidovirus links coronavirus and potyvirus homologs.
J Virol. 2003 Jan;77(2):1415-26. doi: 10.1128/jvi.77.2.1415-1426.2003.
9
Structure-function relationship of Chikungunya nsP2 protease: A comparative study with papain.
Chem Biol Drug Des. 2017 May;89(5):772-782. doi: 10.1111/cbdd.12901. Epub 2017 Jan 5.

引用本文的文献

2
Potyviral Helper-Component Protease: Multifaced Functions and Interactions with Host Proteins.
Plants (Basel). 2024 Apr 29;13(9):1236. doi: 10.3390/plants13091236.
4
Role of Plant Virus Movement Proteins in Suppression of Host RNAi Defense.
Int J Mol Sci. 2023 May 20;24(10):9049. doi: 10.3390/ijms24109049.
5
Proteome expansion in the Potyviridae evolutionary radiation.
FEMS Microbiol Rev. 2022 Jul 1;46(4). doi: 10.1093/femsre/fuac011.
6
Proteolytic Processing of Plant Proteins by Potyvirus NIa Proteases.
J Virol. 2022 Jan 26;96(2):e0144421. doi: 10.1128/JVI.01444-21. Epub 2021 Nov 10.
10
Expanding Repertoire of Plant Positive-Strand RNA Virus Proteases.
Viruses. 2019 Jan 15;11(1):66. doi: 10.3390/v11010066.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2009).
Arch Virol. 2010;155(1):133-46. doi: 10.1007/s00705-009-0547-x. Epub 2009 Dec 4.
3
MEROPS: the peptidase database.
Nucleic Acids Res. 2010 Jan;38(Database issue):D227-33. doi: 10.1093/nar/gkp971. Epub 2009 Nov 5.
8
Antiviral immunity directed by small RNAs.
Cell. 2007 Aug 10;130(3):413-26. doi: 10.1016/j.cell.2007.07.039.
10
Automated structure solution with autoSHARP.
Methods Mol Biol. 2007;364:215-30. doi: 10.1385/1-59745-266-1:215.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验