Chemistry Department, University of California at Irvine, Irvine, California 92697, USA.
J Chem Phys. 2011 May 7;134(17):174109. doi: 10.1063/1.3585648.
A new method, here called thermal Gaussian molecular dynamics (TGMD), for simulating the dynamics of quantum many-body systems has recently been introduced [I. Georgescu and V. A. Mandelshtam, Phys. Rev. B 82, 094305 (2010)]. As in the centroid molecular dynamics (CMD), in TGMD the N-body quantum system is mapped to an N-body classical system. The associated both effective Hamiltonian and effective force are computed within the variational Gaussian wave-packet approximation. The TGMD is exact for the high-temperature limit, accurate for short times, and preserves the quantum canonical distribution. For a harmonic potential and any form of operator Â, it provides exact time correlation functions C(AB)(t) at least for the case of B, a linear combination of the position, x, and momentum, p, operators. While conceptually similar to CMD and other quantum molecular dynamics approaches, the great advantage of TGMD is its computational efficiency. We introduce the many-body implementation and demonstrate it on the benchmark problem of calculating the velocity time auto-correlation function for liquid para-hydrogen, using a system of up to N = 2592 particles.
最近提出了一种新的方法,即热高斯分子动力学(TGMD),用于模拟量子多体系统的动力学[I. Georgescu 和 V. A. Mandelshtam,Phys. Rev. B 82, 094305(2010)]。与质心分子动力学(CMD)一样,在 TGMD 中,N 体量子系统被映射到 N 体经典系统。在变分高斯波包近似中计算相关的有效哈密顿量和有效力。对于高温极限,TGMD是精确的,对于短时间是准确的,并且保留了量子正则分布。对于谐波势和任何形式的算符Â,它至少在 B 为位置 x 和动量 p 算符的线性组合的情况下提供了精确的时间相关函数 C(AB)(t)。虽然在概念上与 CMD 和其他量子分子动力学方法相似,但 TGMD 的巨大优势在于其计算效率。我们介绍了多体实现,并在液体仲氢的速度时间自相关函数的基准问题上进行了演示,使用了多达 N = 2592 个粒子的系统。