Suppr超能文献

在矿物引导的前生物化学循环中碳水化合物的合成。

Synthesis of carbohydrates in mineral-guided prebiotic cycles.

机构信息

Foundation for Applied Molecular Evolution, Westheimer Institute for Science and Technology, P.O. Box 13174, Gainesville, Florida 32604, USA.

出版信息

J Am Chem Soc. 2011 Jun 22;133(24):9457-68. doi: 10.1021/ja201769f. Epub 2011 May 27.

Abstract

One present obstacle to the "RNA-first" model for the origin of life is an inability to generate reasonable "hands off" scenarios for the formation of carbohydrates under conditions where they might have survived for reasonable times once formed. Such scenarios would be especially compelling if they deliver pent(ul)oses, five-carbon sugars found in terran genetics, and exclude other carbohydrates (e.g., aldotetroses) that may also be able to function in genetic systems. Here, we provide detailed chemical analyses of carbohydrate premetabolism, showing how borate, molybdate, and calcium minerals guide the formation of tetroses (C(4)H(8)O(4)), heptoses (C(7)H(14)O(7)), and pentoses (C(5)H(10)O(5)), including the ribose found in RNA, in "hands off" experiments, starting with formaldehyde and glycolaldehyde. These results show that pent(ul)oses would almost certainly have formed as stable borate complexes on the surface of an early Earth beneath a humid CO(2) atmosphere suffering electrical discharge. While aldotetroses form extremely stable complexes with borate, they are not accessible by pathways plausible under the most likely early Earth scenarios. The stabilization by borate is not, however, absolute. Over longer times, material is expected to have passed from borate-bound pent(ul)oses to a branched heptulose, which is susceptible to Cannizzaro reduction to give dead end products. We show how this fate might be avoided using molybdate-catalyzed rearrangement of a branched pentose that is central to borate-moderated cycles that fix carbon from formaldehyde. Our emerging understanding of the nature of the early Earth, including the presence of hydrated rocks undergoing subduction to form felsic magmas in the early Hadean eon, may have made borate and molydate species available to prebiotic chemistry, despite the overall "reduced" state of the planet.

摘要

生命起源的“RNA 优先”模型目前面临的一个障碍是,无法在形成碳水化合物的条件下生成合理的“不干预”场景,使它们一旦形成就能在合理的时间内存活。如果这些场景能生成五碳糖(terran 遗传学中发现的五碳糖),并排除其他可能在遗传系统中发挥作用的碳水化合物(如丙糖),那么这些场景将特别有说服力。在这里,我们提供了碳水化合物前代谢的详细化学分析,展示了硼酸盐、钼酸盐和钙矿物如何引导四碳糖(C(4)H(8)O(4))、庚糖(C(7)H(14)O(7))和戊糖(C(5)H(10)O(5))的形成,包括 RNA 中的核糖,在“不干预”实验中,从甲醛和乙二醇醛开始。这些结果表明,戊糖(ul)几乎肯定会在潮湿的二氧化碳大气中遭受放电的早期地球上,作为稳定的硼酸盐络合物形成。虽然丙糖与硼酸盐形成极其稳定的络合物,但在最有可能的早期地球情景下,它们无法通过途径获得。然而,硼酸盐的稳定作用并不是绝对的。随着时间的推移,预计会有物质从与硼酸盐结合的戊糖(ul)转移到分支庚糖,分支庚糖容易发生坎尼扎罗还原,生成死端产物。我们展示了如何使用钼酸盐催化的分支戊糖重排来避免这种命运,这种戊糖重排是从甲醛中固定碳的硼酸盐调节循环的核心。我们对早期地球性质的理解不断加深,包括含水岩石俯冲形成早期 Hadean 代长英质岩浆的存在,这可能使硼酸盐和钼酸盐物种在原始生命化学中变得可用,尽管行星总体上处于“还原”状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验