Dipartimento Farmaceutico, Via G. P. Usberti 27/A, Campus Universitario, Università degli Studi di Parma, 43100 Parma, Italy.
Future Med Chem. 2011 Apr;3(6):665-81. doi: 10.4155/fmc.11.27.
G-protein coupled receptors may exist as functional homodimers, heterodimers and even as higher aggregates. In this work, we investigate the 5-HT(2A) receptor, which is a known target for antipsychotic drugs. Recently, 5-HT(2A) has been shown to form functional homodimers and heterodimers with the mGluR2 receptor. The objective of this study is to build up 3D models of the 5-HT(2A)/mGluR2 heterodimer and of the 5-HT(2A)-5-HT(2A) homodimer, and to evaluate the impact of the dimerization interface on the shape of the 5-HT(2A) binding pocket by using molecular dynamics simulations and docking studies.
The heterodimer, homodimer and monomeric 5-HT(2A) receptors were simulated by molecular dynamics for 40 ns each. The trajectories were clustered and representative structures of six clusters for each system were generated. Inspection of the these representative structures clearly indicate an effect of the dimerization interface on the topology of the binding pocket. Docking studies allowed to generate receiver operating characteristic curves for a set of 5-HT(2A) ligands, indicating that different complexes prefer different classes of 5-HT(2A) ligands.
This study clearly indicates that the presence of a dimerization interface must explicitly be considered when studying G-protein coupled receptors known to exist as dimers. Molecular dynamics simulation and cluster analysis are appropriate tools to study the phenomenon.
G 蛋白偶联受体可能以功能同二聚体、异二聚体甚至更高的聚集体形式存在。在这项工作中,我们研究了 5-HT(2A)受体,它是一种已知的抗精神病药物靶点。最近,5-HT(2A)已被证明可以与 mGluR2 受体形成功能性同二聚体和异二聚体。本研究的目的是构建 5-HT(2A)/mGluR2 异二聚体和 5-HT(2A)-5-HT(2A)同二聚体的 3D 模型,并通过分子动力学模拟和对接研究评估二聚化界面对 5-HT(2A)结合口袋形状的影响。
对每个单体、同二聚体和异二聚体的 5-HT(2A)受体进行了 40 ns 的分子动力学模拟。对轨迹进行了聚类,并生成了每个系统的六个聚类的代表性结构。对这些代表性结构的检查清楚地表明,二聚化界面对结合口袋的拓扑结构有影响。对接研究允许为一组 5-HT(2A)配体生成接收者操作特征曲线,表明不同的复合物优先与不同类别的 5-HT(2A)配体结合。
本研究清楚地表明,在研究已知以二聚体形式存在的 G 蛋白偶联受体时,必须明确考虑二聚化界面的存在。分子动力学模拟和聚类分析是研究这一现象的合适工具。