Kwon Suncheol, Kim Jung
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea.
IEEE Trans Inf Technol Biomed. 2011 Jul;15(4):522-30. doi: 10.1109/TITB.2011.2151869. Epub 2011 May 10.
A current challenge with human-machine cooperation systems is to estimate human motions to facilitate natural cooperation and safety of the human. It is a logical approach to estimate the motions from their sources (skeletal muscles); thus, we employed surface electromyography (SEMG) to estimate body motions. In this paper, we investigated a cooperative manipulation control by an upper limb motion estimation method using SEMG and joint angular velocities. The SEMG signals from five upper limb muscles and angular velocities of the limb joints were used to approximate the flexion-extension of the limb in the 2-D sagittal plane. The experimental results showed that the proposed estimation method provides acceptable performance of the motion estimation [normalized root mean square error (NRMSE) <0.15, correlation coefficient (CC) >0.9] under the noncontact condition. From the analysis of the results, we found the necessity of the angular velocity input and estimation error feedback due to physical contact. Our results suggest that the estimation method can be useful for a natural human-machine cooperation control.
当前人机协作系统面临的一个挑战是估计人体动作,以促进自然协作和人员安全。从动作的源头(骨骼肌)来估计动作是一种合乎逻辑的方法;因此,我们采用表面肌电图(SEMG)来估计身体动作。在本文中,我们研究了一种通过使用SEMG和关节角速度的上肢动作估计方法进行的协同操作控制。来自上肢五块肌肉的SEMG信号和肢体关节的角速度被用于近似二维矢状面内肢体的屈伸动作。实验结果表明,所提出的估计方法在非接触条件下提供了可接受的动作估计性能[归一化均方根误差(NRMSE)<0.15,相关系数(CC)>0.9]。通过对结果的分析,我们发现了由于物理接触而产生的角速度输入和估计误差反馈的必要性。我们的结果表明,该估计方法可用于自然的人机协作控制。