Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0600, USA.
J Biol Chem. 2011 Jul 1;286(26):23054-62. doi: 10.1074/jbc.M111.248831. Epub 2011 May 10.
DNA ligase I (LIG1) catalyzes the ligation of single-strand breaks to complete DNA replication and repair. The energy of ATP is used to form a new phosphodiester bond in DNA via a reaction mechanism that involves three distinct chemical steps: enzyme adenylylation, adenylyl transfer to DNA, and nick sealing. We used steady state and pre-steady state kinetics to characterize the minimal mechanism for DNA ligation catalyzed by human LIG1. The ATP dependence of the reaction indicates that LIG1 requires multiple Mg(2+) ions for catalysis and that an essential Mg(2+) ion binds more tightly to ATP than to the enzyme. Further dissection of the magnesium ion dependence of individual reaction steps revealed that the affinity for Mg(2+) changes along the reaction coordinate. At saturating concentrations of ATP and Mg(2+) ions, the three chemical steps occur at similar rates, and the efficiency of ligation is high. However, under conditions of limiting Mg(2+), the nick-sealing step becomes rate-limiting, and the adenylylated DNA intermediate is prematurely released into solution. Subsequent adenylylation of enzyme prevents rebinding to the adenylylated DNA intermediate comprising an Achilles' heel of LIG1. These ligase-generated 5'-adenylylated nicks constitute persistent breaks that are a threat to genomic stability if they are not repaired. The kinetic and thermodynamic framework that we have determined for LIG1 provides a starting point for understanding the mechanism and specificity of mammalian DNA ligases.
DNA 连接酶 I(LIG1)催化单链断裂的连接,以完成 DNA 复制和修复。通过涉及三个不同化学步骤的反应机制,利用 ATP 的能量在 DNA 中形成新的磷酸二酯键:酶腺苷酸化、腺苷酰基转移至 DNA 以及缺口密封。我们使用稳态和预稳态动力学来描述人源 LIG1 催化的 DNA 连接的最小机制。反应对 ATP 的依赖性表明 LIG1 催化需要多个 Mg(2+)离子,并且必需的 Mg(2+)离子与 ATP 的结合比与酶的结合更紧密。对各个反应步骤中镁离子依赖性的进一步剖析表明,沿反应坐标,Mg(2+)的亲和力发生变化。在饱和浓度的 ATP 和 Mg(2+)离子条件下,三个化学步骤以相似的速率发生,并且连接效率很高。然而,在限制 Mg(2+)的条件下,缺口密封步骤成为限速步骤,并且腺苷酰化的 DNA 中间体过早地释放到溶液中。随后酶的腺苷酰化阻止与包含 LIG1 阿喀琉斯之踵的腺苷酰化 DNA 中间体重新结合。这些由连接酶产生的 5'-腺苷酰化缺口构成持续的断裂,如果不修复,它们将对基因组稳定性构成威胁。我们为 LIG1 确定的动力学和热力学框架为理解哺乳动物 DNA 连接酶的机制和特异性提供了起点。