Suppr超能文献

人源 DNA 连接酶 I 的动力学机制揭示了限速步骤中依赖镁离子的变化,这会损害连接效率。

Kinetic mechanism of human DNA ligase I reveals magnesium-dependent changes in the rate-limiting step that compromise ligation efficiency.

机构信息

Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0600, USA.

出版信息

J Biol Chem. 2011 Jul 1;286(26):23054-62. doi: 10.1074/jbc.M111.248831. Epub 2011 May 10.

Abstract

DNA ligase I (LIG1) catalyzes the ligation of single-strand breaks to complete DNA replication and repair. The energy of ATP is used to form a new phosphodiester bond in DNA via a reaction mechanism that involves three distinct chemical steps: enzyme adenylylation, adenylyl transfer to DNA, and nick sealing. We used steady state and pre-steady state kinetics to characterize the minimal mechanism for DNA ligation catalyzed by human LIG1. The ATP dependence of the reaction indicates that LIG1 requires multiple Mg(2+) ions for catalysis and that an essential Mg(2+) ion binds more tightly to ATP than to the enzyme. Further dissection of the magnesium ion dependence of individual reaction steps revealed that the affinity for Mg(2+) changes along the reaction coordinate. At saturating concentrations of ATP and Mg(2+) ions, the three chemical steps occur at similar rates, and the efficiency of ligation is high. However, under conditions of limiting Mg(2+), the nick-sealing step becomes rate-limiting, and the adenylylated DNA intermediate is prematurely released into solution. Subsequent adenylylation of enzyme prevents rebinding to the adenylylated DNA intermediate comprising an Achilles' heel of LIG1. These ligase-generated 5'-adenylylated nicks constitute persistent breaks that are a threat to genomic stability if they are not repaired. The kinetic and thermodynamic framework that we have determined for LIG1 provides a starting point for understanding the mechanism and specificity of mammalian DNA ligases.

摘要

DNA 连接酶 I(LIG1)催化单链断裂的连接,以完成 DNA 复制和修复。通过涉及三个不同化学步骤的反应机制,利用 ATP 的能量在 DNA 中形成新的磷酸二酯键:酶腺苷酸化、腺苷酰基转移至 DNA 以及缺口密封。我们使用稳态和预稳态动力学来描述人源 LIG1 催化的 DNA 连接的最小机制。反应对 ATP 的依赖性表明 LIG1 催化需要多个 Mg(2+)离子,并且必需的 Mg(2+)离子与 ATP 的结合比与酶的结合更紧密。对各个反应步骤中镁离子依赖性的进一步剖析表明,沿反应坐标,Mg(2+)的亲和力发生变化。在饱和浓度的 ATP 和 Mg(2+)离子条件下,三个化学步骤以相似的速率发生,并且连接效率很高。然而,在限制 Mg(2+)的条件下,缺口密封步骤成为限速步骤,并且腺苷酰化的 DNA 中间体过早地释放到溶液中。随后酶的腺苷酰化阻止与包含 LIG1 阿喀琉斯之踵的腺苷酰化 DNA 中间体重新结合。这些由连接酶产生的 5'-腺苷酰化缺口构成持续的断裂,如果不修复,它们将对基因组稳定性构成威胁。我们为 LIG1 确定的动力学和热力学框架为理解哺乳动物 DNA 连接酶的机制和特异性提供了起点。

相似文献

2
Kinetics and thermodynamics of nick sealing by T4 DNA ligase.
Eur J Biochem. 2003 Nov;270(21):4315-25. doi: 10.1046/j.1432-1033.2003.03824.x.
3
Kinetic analyses of single-stranded break repair by human DNA ligase III isoforms reveal biochemical differences from DNA ligase I.
J Biol Chem. 2017 Sep 22;292(38):15870-15879. doi: 10.1074/jbc.M117.804625. Epub 2017 Jul 27.
5
Kinetic characterization of single strand break ligation in duplex DNA by T4 DNA ligase.
J Biol Chem. 2011 Dec 23;286(51):44187-44196. doi: 10.1074/jbc.M111.284992. Epub 2011 Oct 25.
6
Two-tiered enforcement of high-fidelity DNA ligation.
Nat Commun. 2019 Nov 28;10(1):5431. doi: 10.1038/s41467-019-13478-7.
7
Mechanistic and kinetic study of the ATP-dependent DNA ligase of Neisseria meningitidis.
Biochemistry. 2004 Jan 27;43(3):710-7. doi: 10.1021/bi0355387.
8
The associative nature of adenylyl transfer catalyzed by T4 DNA ligase.
Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8563-8. doi: 10.1073/pnas.0709140105. Epub 2008 Jun 18.

引用本文的文献

2
Yaravirus brasiliense genomic structure analysis and its possible influence on the metabolism.
Genet Mol Biol. 2025 Feb 7;48(1):e20240139. doi: 10.1590/1678-4685-GMB-2024-0139. eCollection 2025.
3
Potent inhibitors of the human RNA ligase Rlig1 highlights its role in RNA integrity maintenance under oxidative cellular stress.
Chem Sci. 2025 Jan 18;16(7):3313-3322. doi: 10.1039/d4sc06542e. eCollection 2025 Feb 12.
4
Rare variants of DNA ligase 1 show distinct mechanisms of deficiency.
J Biol Chem. 2024 Dec;300(12):107957. doi: 10.1016/j.jbc.2024.107957. Epub 2024 Nov 5.
6
Probing the mechanism of nick searching by LIG1 at the single-molecule level.
Nucleic Acids Res. 2024 Nov 11;52(20):12604-12615. doi: 10.1093/nar/gkae865.
7
Characterisation and engineering of a thermophilic RNA ligase from Palaeococcus pacificus.
Nucleic Acids Res. 2024 Apr 24;52(7):3924-3937. doi: 10.1093/nar/gkae149.
9
Obstacles and opportunities for base excision repair in chromatin.
DNA Repair (Amst). 2022 Aug;116:103345. doi: 10.1016/j.dnarep.2022.103345. Epub 2022 May 28.

本文引用的文献

1
Crucial role for DNA ligase III in mitochondria but not in Xrcc1-dependent repair.
Nature. 2011 Mar 10;471(7337):245-8. doi: 10.1038/nature09794.
2
DNA ligase III is critical for mtDNA integrity but not Xrcc1-mediated nuclear DNA repair.
Nature. 2011 Mar 10;471(7337):240-4. doi: 10.1038/nature09773.
3
Functional dissection of the DNA interface of the nucleotidyltransferase domain of chlorella virus DNA ligase.
J Biol Chem. 2011 Apr 15;286(15):13314-26. doi: 10.1074/jbc.M111.226191. Epub 2011 Feb 18.
4
The DNA binding domain of human DNA ligase I interacts with both nicked DNA and the DNA sliding clamps, PCNA and hRad9-hRad1-hHus1.
DNA Repair (Amst). 2009 Aug 6;8(8):912-9. doi: 10.1016/j.dnarep.2009.05.002. Epub 2009 Jun 11.
5
DNA ligases: progress and prospects.
J Biol Chem. 2009 Jun 26;284(26):17365-9. doi: 10.1074/jbc.R900017200. Epub 2009 Mar 27.
6
Molecular mechanism of DNA deadenylation by the neurological disease protein aprataxin.
J Biol Chem. 2008 Dec 5;283(49):33994-4001. doi: 10.1074/jbc.M807124200. Epub 2008 Oct 3.
7
Eukaryotic DNA ligases: structural and functional insights.
Annu Rev Biochem. 2008;77:313-38. doi: 10.1146/annurev.biochem.77.061306.123941.
9
The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates.
Nature. 2006 Oct 12;443(7112):713-6. doi: 10.1038/nature05164. Epub 2006 Sep 10.
10
DNA ligases: structure, reaction mechanism, and function.
Chem Rev. 2006 Feb;106(2):687-99. doi: 10.1021/cr040498d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验