Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
ChemSusChem. 2011 Jul 18;4(7):935-42. doi: 10.1002/cssc.201100046. Epub 2011 May 11.
The hierarchically structured carbon nanofibers (CNFs)/carbon felt composites, in which CNFs were directly grown on the surface of microfibers in carbon felt, forming a CNF layer on a micrometer range that completely covers the microfiber surfaces, were tested as a novel support material for cobalt nanoparticles in the highly exothermic Fischer-Tropsch (F-T) synthesis. A compact, fixed-bed reactor, made of disks of such composite materials, offered the advantages of improved heat and mass transfer, relatively low pressure drop, and safe handling of immobilized CNFs. An efficient 3-D thermal conductive network in the composite provided a relatively uniform temperature profile, whereas the open structure of the CNF layer afforded an almost 100 % effectiveness of Co nanoparticles in the F-T synthesis in the fixed bed. The greatly improved mass and heat transport makes the compact reactor attractive for applications in the conversion of biomass, coal, and natural gas to liquids.
分层结构的碳纳米纤维(CNF)/碳纤维毡复合材料,其中 CNF 直接在碳纤维毡的微纤维表面生长,在微米范围内形成完全覆盖微纤维表面的 CNF 层,被测试作为高度放热费托(F-T)合成中钴纳米粒子的新型支撑材料。由这种复合材料制成的圆盘紧凑固定床反应器具有改进的传热和传质、相对较低的压降以及固定化 CNF 安全处理的优点。复合材料中的有效 3-D 热传导网络提供了相对均匀的温度分布,而 CNF 层的开放结构在固定床中为 F-T 合成中的钴纳米粒子提供了几乎 100%的效率。大大改善的质量和热传递使得紧凑的反应器在将生物质、煤和天然气转化为液体的应用中具有吸引力。