Suppr超能文献

全基因组关联研究的基因集分析:方法学问题与展望。

Gene set analysis of genome-wide association studies: methodological issues and perspectives.

机构信息

Department of Biostatistics, Vanderbilt University, Nashville, TN 37232, USA.

出版信息

Genomics. 2011 Jul;98(1):1-8. doi: 10.1016/j.ygeno.2011.04.006. Epub 2011 Apr 30.

Abstract

Recent studies have demonstrated that gene set analysis, which tests disease association with genetic variants in a group of functionally related genes, is a promising approach for analyzing and interpreting genome-wide association studies (GWAS) data. These approaches aim to increase power by combining association signals from multiple genes in the same gene set. In addition, gene set analysis can also shed more light on the biological processes underlying complex diseases. However, current approaches for gene set analysis are still in an early stage of development in that analysis results are often prone to sources of bias, including gene set size and gene length, linkage disequilibrium patterns and the presence of overlapping genes. In this paper, we provide an in-depth review of the gene set analysis procedures, along with parameter choices and the particular methodology challenges at each stage. In addition to providing a survey of recently developed tools, we also classify the analysis methods into larger categories and discuss their strengths and limitations. In the last section, we outline several important areas for improving the analytical strategies in gene set analysis.

摘要

最近的研究表明,基因集分析是一种很有前途的方法,它可以通过检测一组功能相关基因中的遗传变异与疾病的关联,来分析和解释全基因组关联研究 (GWAS) 数据。这些方法旨在通过整合同一基因集中多个基因的关联信号来提高效力。此外,基因集分析还可以更深入地了解复杂疾病背后的生物学过程。然而,目前的基因集分析方法仍处于早期发展阶段,因为分析结果往往容易受到多种因素的影响,包括基因集大小和基因长度、连锁不平衡模式以及重叠基因的存在。本文深入综述了基因集分析的过程,以及在每个阶段的参数选择和特定方法学挑战。除了对最近开发的工具进行综述外,我们还将分析方法分为更大的类别,并讨论它们的优缺点。最后一节概述了改进基因集分析中分析策略的几个重要领域。

相似文献

1
Gene set analysis of genome-wide association studies: methodological issues and perspectives.
Genomics. 2011 Jul;98(1):1-8. doi: 10.1016/j.ygeno.2011.04.006. Epub 2011 Apr 30.
3
An efficient hierarchical generalized linear mixed model for pathway analysis of genome-wide association studies.
Bioinformatics. 2011 Mar 1;27(5):686-92. doi: 10.1093/bioinformatics/btq728. Epub 2011 Jan 25.
4
Gene set analysis of SNP data: benefits, challenges, and future directions.
Eur J Hum Genet. 2011 Aug;19(8):837-43. doi: 10.1038/ejhg.2011.57. Epub 2011 Apr 13.
6
Statistical power of transcriptome-wide association studies.
Genet Epidemiol. 2022 Dec;46(8):572-588. doi: 10.1002/gepi.22491. Epub 2022 Jun 29.
7
Efficient Software for Multi-marker, Region-Based Analysis of GWAS Data.
G3 (Bethesda). 2016 Apr 7;6(4):1023-30. doi: 10.1534/g3.115.026013.
10
SNP-based pathway enrichment analysis for genome-wide association studies.
BMC Bioinformatics. 2011 Apr 15;12:99. doi: 10.1186/1471-2105-12-99.

引用本文的文献

1
Multi-trait GWAS for growth under contrasting thermal rearing conditions in rainbow trout (Oncorhynchus mykiss).
Mol Genet Genomics. 2025 Aug 11;300(1):75. doi: 10.1007/s00438-025-02263-5.
2
A high-dimensional omnibus test for set-based association analysis.
Brief Bioinform. 2024 Jul 25;25(5). doi: 10.1093/bib/bbae456.
4
The goldmine of GWAS summary statistics: a systematic review of methods and tools.
BioData Min. 2024 Sep 5;17(1):31. doi: 10.1186/s13040-024-00385-x.
5
A best-match approach for gene set analyses in embedding spaces.
Genome Res. 2024 Oct 11;34(9):1421-1433. doi: 10.1101/gr.279141.124.
8
The shared genetic architecture of suicidal behaviour and psychiatric disorders: A genomic structural equation modelling study.
Front Genet. 2023 Mar 7;14:1083969. doi: 10.3389/fgene.2023.1083969. eCollection 2023.
10
Integrating Multi-Omics Data for Gene-Environment Interactions.
BioTech (Basel). 2021 Jan 29;10(1):3. doi: 10.3390/biotech10010003.

本文引用的文献

1
Prioritization of epilepsy associated candidate genes by convergent analysis.
PLoS One. 2011 Feb 24;6(2):e17162. doi: 10.1371/journal.pone.0017162.
2
Assessing gene length biases in gene set analysis of Genome-Wide Association Studies.
Int J Comput Biol Drug Des. 2010;3(4):297-310. doi: 10.1504/IJCBDD.2010.038394. Epub 2011 Feb 4.
3
An efficient hierarchical generalized linear mixed model for pathway analysis of genome-wide association studies.
Bioinformatics. 2011 Mar 1;27(5):686-92. doi: 10.1093/bioinformatics/btq728. Epub 2011 Jan 25.
4
Pathway-based analysis of GWAS datasets: effective but caution required.
Int J Neuropsychopharmacol. 2011 May;14(4):567-72. doi: 10.1017/S1461145710001446. Epub 2010 Dec 16.
5
Exploring the link between germline and somatic genetic alterations in breast carcinogenesis.
PLoS One. 2010 Nov 22;5(11):e14078. doi: 10.1371/journal.pone.0014078.
6
Analysing biological pathways in genome-wide association studies.
Nat Rev Genet. 2010 Dec;11(12):843-54. doi: 10.1038/nrg2884.
7
dmGWAS: dense module searching for genome-wide association studies in protein-protein interaction networks.
Bioinformatics. 2011 Jan 1;27(1):95-102. doi: 10.1093/bioinformatics/btq615. Epub 2010 Nov 2.
8
A combined analysis of genome-wide association studies in breast cancer.
Breast Cancer Res Treat. 2011 Apr;126(3):717-27. doi: 10.1007/s10549-010-1172-9. Epub 2010 Sep 26.
9
10
Integrating common and rare genetic variation in diverse human populations.
Nature. 2010 Sep 2;467(7311):52-8. doi: 10.1038/nature09298.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验