Xia Yangjun, Su Xuehua, He Zhicai, Ren Xia, Wu Hongbing, Cao Yong, Fan Duowang
Key Laboratory of Optoelectronic Technology and Intelligent Control, Lanzhou Jiaotong University, Lanzhou, 730070, P. R. China; Institute of Polymer Optoelectronic Materials and Devices, Key Laboratory of Special Functional Materials and Advanced Manufacturing Technology, South China University of Technology, Guangzhou, 510640, P. R. China.
Macromol Rapid Commun. 2010 Jul 15;31(14):1287-92. doi: 10.1002/marc.201000062. Epub 2010 May 4.
An alternating narrow bandgap conjugated copolymer (PICZ-DTBT, E(g) = 1.83 eV) derived from 5,11-di(9-heptadecanyl)indolo[3,2-b]carbazole and 4,7-di(thieno[3,2-b]thien-2-yl)-2,1,3-benzothiadiazole (DTBT), was prepared by the palladium-catalyzed Suzuki coupling reaction. The resultant polymer absorbs light from 350-690 nm, exhibits two absorbance peaks at around 420 and 570 nm and has good solution processibility and thermal stability. The highest occupied molecular orbital (HOMO) energy level and lowest unoccupied molecular orbital (LUMO) level of the copolymer determined by cyclic voltammetry were about -5.18 and -3.35 eV, respectively. Prototype bulk heterojunction photovoltaic cells from solid-state composite films based on PICZ-DTBT and [6,6]-phenyl-C(71) butyric acid methyl ester (PC(71) BM), show power conversion efficiencies up to 2.4% under 80 mW · cm(-2) illumination (AM1.5) with an open-circuit voltage of V(oc) = 0.75 V, a short current density of J(sc) = 6.02 mA · cm(-2) , and a fill factor of 42%. This indicates that the copolymer PICZ-DTBT is a viable electron donor material for polymeric solar cells.
一种由5,11-二(9-十七烷基)吲哚并[3,2-b]咔唑和4,7-二(噻吩并[3,2-b]噻吩-2-基)-2,1,3-苯并噻二唑(DTBT)衍生的交替窄带隙共轭共聚物(PICZ-DTBT,E(g) = 1.83 eV),通过钯催化的铃木偶联反应制备而成。所得聚合物吸收350 - 690 nm的光,在420和570 nm左右呈现两个吸收峰,并且具有良好的溶液加工性能和热稳定性。通过循环伏安法测定的该共聚物的最高占据分子轨道(HOMO)能级和最低未占据分子轨道(LUMO)能级分别约为 -5.18和 -3.35 eV。基于PICZ-DTBT和[6,6]-苯基-C(71)丁酸甲酯(PC(71)BM)的固态复合膜制备的原型体异质结光伏电池,在80 mW·cm(-2)光照(AM1.5)下,开路电压V(oc) = 0.75 V,短路电流密度J(sc) = 6.02 mA·cm(-2),填充因子为42%时,功率转换效率高达2.4%。这表明共聚物PICZ-DTBT是用于聚合物太阳能电池的一种可行的电子供体材料。