Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.
Neuroscience. 2011 Jul 28;187:70-83. doi: 10.1016/j.neuroscience.2011.04.059. Epub 2011 May 6.
Delta opioid receptor (DOR) activation protects the adult mammalian brain during oxygen-glucose deprivation (OGD), but it is not known whether neonatal spinal motor circuits are also protected. Also, it is unclear whether the timing of spinal DOR activation relative to spinal OGD is important for neuroprotection. Thus, a split-bath in vitro neonatal rat brainstem/spinal cord preparation was used to record spontaneous respiratory motor output from cervical (C4-C5) and thoracic (T5-T6) ventral spinal roots while exposing only the spinal cord to OGD solution (0 mM glucose, bubbled with 95% N(2)/5% CO(2)) or DOR agonist drugs (DADLE, DPDPE). Spinal OGD solution application caused respiratory motor output frequency and amplitude to decrease until all activity was abolished (i.e. end-point times) after 25.9±1.4 min (cervical) and 25.2±1.4 min (thoracic). Spinal DOR activation via DPDPE (1.0 μM) prior-to and during spinal OGD increased cervical and thoracic end-point times to 35-48 min. Spinal DADLE or DPDPE (1.0 μM) application 15 min following spinal OGD onset increased cervical and thoracic end-point times to 36-45 min. Brief spinal DPDPE (1.0 μM) application for 10 min at 25 min before spinal OGD onset increased cervical and thoracic end-point times to 41-46 min. Overall, the selective DOR agonist, DPDPE, was more effective at increasing end-point times than DADLE. Naltrindole (DOR antagonist; 10 μM) pretreatment blocked DPDPE-dependent increase in end-point times, suggesting that DOR activation was required. Spinal naloxone (1.0 μM) application before and during spinal OGD also increased end-point times to 31-33 min, but end-point times were not altered by Mu opioid receptor (MOR) activation or DOR activation/MOR blockade, indicating that there are complex interactions between OGD and opioid signaling pathways. These data suggest DOR activation before, during, and after spinal OGD protects central motor networks and may provide neuroprotection during unpredictable perinatal ischemic events.
德尔塔阿片受体 (DOR) 的激活可在氧葡萄糖剥夺 (OGD) 期间保护成年哺乳动物的大脑,但尚不清楚新生儿脊髓运动回路是否也受到保护。此外,DOR 在脊髓中的激活时间相对于脊髓 OGD 是否对神经保护很重要尚不清楚。因此,使用离体新生大鼠脑干/脊髓制备物的分浴系统来记录来自颈 (C4-C5) 和胸 (T5-T6) 腹侧脊髓根的自发呼吸运动输出,同时仅使脊髓暴露于 OGD 溶液 (0 mM 葡萄糖,用 95% N2/5% CO2 鼓泡) 或 DOR 激动剂药物 (DADLE、DPDPE)。脊髓 OGD 溶液的应用导致呼吸运动输出频率和幅度降低,直到所有活动在 25.9±1.4 分钟 (颈段) 和 25.2±1.4 分钟 (胸段) 后被消除 (即终点时间)。在脊髓 OGD 之前和期间通过 DPDPE (1.0 μM) 激活脊髓 DOR 增加了颈椎和胸椎的终点时间,达到 35-48 分钟。在脊髓 OGD 开始后 15 分钟应用脊髓 DADLE 或 DPDPE (1.0 μM) 将颈椎和胸椎的终点时间延长至 36-45 分钟。在脊髓 OGD 开始前 25 分钟用 10 分钟短暂应用脊髓 DPDPE (1.0 μM) 将颈椎和胸椎的终点时间延长至 41-46 分钟。总体而言,选择性 DOR 激动剂 DPDPE 比 DADLE 更有效地延长终点时间。纳曲吲哚 (DOR 拮抗剂;10 μM) 预处理阻断了 DPDPE 依赖性终点时间的增加,表明需要 DOR 激活。在脊髓 OGD 之前和期间应用脊髓纳洛酮 (1.0 μM) 也将终点时间延长至 31-33 分钟,但 MOR 激活或 DOR 激活/MOR 阻断都没有改变 MOR 激活的终点时间,表明 OGD 和阿片信号通路之间存在复杂的相互作用。这些数据表明,在脊髓 OGD 之前、期间和之后激活 DOR 可保护中枢运动网络,并可能在不可预测的围产期缺血事件中提供神经保护。