Suppr超能文献

依赖能量的希瓦氏菌 MR-1 生物膜稳定性。

Energy-dependent stability of Shewanella oneidensis MR-1 biofilms.

机构信息

James H. Clark Center, Stanford University, Stanford, CA 94305-5429, USA.

出版信息

J Bacteriol. 2011 Jul;193(13):3257-64. doi: 10.1128/JB.00251-11. Epub 2011 May 13.

Abstract

Stability and resistance to dissolution are key features of microbial biofilms. How these macroscopic properties are determined by the physiological state of individual biofilm cells in their local physical-chemical and cellular environment is largely unknown. In order to obtain molecular and energetic insight into biofilm stability, we investigated whether maintenance of biofilm stability is an energy-dependent process and whether transcription and/or translation is required for biofilm dissolution. We found that in 12-hour-old Shewanella oneidensis MR-1 biofilms, a reduction in cellular ATP concentration, induced either by oxygen deprivation or by addition of the inhibitor of oxidative phosphorylation carbonyl cyanide m-chlorophenylhydrazone (CCCP), dinitrophenol (DNP), or CN(-), resulted in massive dissolution. In 60-hour-old biofilms, the extent of uncoupler-induced cell loss was strongly attenuated, indicating that the integrity of older biofilms is maintained by means other than those operating in younger biofilms. In experiments with 12-hour-old biofilms, the transcriptional and translational inhibitors rifampin, tetracycline, and erythromycin were found to be ineffective in preventing energy starvation-induced detachment, suggesting that neither transcription nor translation is required for this process. Biofilms of Vibrio cholerae were also induced to dissolve upon CCCP addition to an extent similar to that in S. oneidensis. However, Pseudomonas aeruginosa and P. putida biofilms remained insensitive to CCCP addition. Collectively, our data show that metabolic energy is directly or indirectly required for maintaining cell attachment, and this may represent a common but not ubiquitous mechanism for stability of microbial biofilms.

摘要

生物膜的稳定性和抗溶解能力是其关键特性。个体生物膜细胞在其局部物理化学和细胞环境中的生理状态如何决定这些宏观特性,在很大程度上尚不清楚。为了从分子和能量角度了解生物膜的稳定性,我们研究了维持生物膜稳定性是否是一个依赖能量的过程,以及转录和/或翻译是否是生物膜溶解所必需的。我们发现,在 12 小时龄的 Shewanella oneidensis MR-1 生物膜中,细胞内 ATP 浓度的降低,无论是通过缺氧诱导还是通过添加氧化磷酸化抑制剂羰基氰化物 m-氯代苯腙 (CCCP)、二硝基苯酚 (DNP) 或 CN(-) 诱导的,都会导致大量溶解。在 60 小时龄的生物膜中,解偶联剂诱导的细胞损失程度大大减弱,这表明较老生物膜的完整性是通过年轻生物膜中不使用的其他方式来维持的。在 12 小时龄生物膜的实验中,发现转录和翻译抑制剂利福平、四环素和红霉素对防止能量饥饿诱导的脱落无效,这表明该过程既不需要转录也不需要翻译。霍乱弧菌生物膜也在添加 CCCP 后被诱导溶解,其程度与在 S. oneidensis 中相似。然而,铜绿假单胞菌和恶臭假单胞菌生物膜对 CCCP 的添加仍然不敏感。总的来说,我们的数据表明代谢能量直接或间接地需要维持细胞附着,这可能代表微生物生物膜稳定性的一种共同但非普遍的机制。

相似文献

1
Energy-dependent stability of Shewanella oneidensis MR-1 biofilms.
J Bacteriol. 2011 Jul;193(13):3257-64. doi: 10.1128/JB.00251-11. Epub 2011 May 13.
2
Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms.
J Bacteriol. 2005 Feb;187(3):1014-21. doi: 10.1128/JB.187.3.1014-1021.2005.
5
Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP.
J Bacteriol. 2006 Apr;188(7):2681-91. doi: 10.1128/JB.188.7.2681-2691.2006.
7
Physiology of microbes in biofilms.
Curr Top Microbiol Immunol. 2008;322:17-36. doi: 10.1007/978-3-540-75418-3_2.
8
Iron triggers λSo prophage induction and release of extracellular DNA in Shewanella oneidensis MR-1 biofilms.
Appl Environ Microbiol. 2014 Sep;80(17):5304-16. doi: 10.1128/AEM.01480-14. Epub 2014 Jun 20.
9
Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr(VI) immobilization.
Appl Environ Microbiol. 2014 Feb;80(4):1498-506. doi: 10.1128/AEM.03461-13. Epub 2013 Dec 20.
10
Initial Phases of biofilm formation in Shewanella oneidensis MR-1.
J Bacteriol. 2004 Dec;186(23):8096-104. doi: 10.1128/JB.186.23.8096-8104.2004.

引用本文的文献

1
Multi-omics analysis reveals genes and metabolites involved in biofilm formation.
Front Microbiol. 2023 Nov 9;14:1287680. doi: 10.3389/fmicb.2023.1287680. eCollection 2023.
2
Biofilms as Battlefield Armor for Bacteria against Antibiotics: Challenges and Combating Strategies.
Microorganisms. 2023 Oct 20;11(10):2595. doi: 10.3390/microorganisms11102595.
3
A bibliography study of Shewanella oneidensis biofilm.
FEMS Microbiol Ecol. 2023 Oct 17;99(11). doi: 10.1093/femsec/fiad124.
4
Coupled C, H, N, S and Fe biogeochemical cycles operating in the continental deep subsurface of the Iberian Pyrite Belt.
Environ Microbiol. 2023 Feb;25(2):428-453. doi: 10.1111/1462-2920.16291. Epub 2022 Dec 9.
5
7
Local Acidification Limits the Current Production and Biofilm Formation of MR-1 With Electrospun Anodes.
Front Microbiol. 2021 Jun 14;12:660474. doi: 10.3389/fmicb.2021.660474. eCollection 2021.
8
Morphological Observation and Comparative Transcriptomic Analysis of Clostridium perfringens Biofilm and Planktonic Cells.
Curr Microbiol. 2018 Sep;75(9):1182-1189. doi: 10.1007/s00284-018-1507-z. Epub 2018 May 11.
9
Shewanella oneidensis MR-1 Utilizes both Sodium- and Proton-Pumping NADH Dehydrogenases during Aerobic Growth.
Appl Environ Microbiol. 2018 May 31;84(12). doi: 10.1128/AEM.00415-18. Print 2018 Jun 15.

本文引用的文献

2
Spatiotemporal activity of the mshA gene system in Shewanella oneidensis MR-1 biofilms.
FEMS Microbiol Lett. 2010 Jul 1;308(1):76-83. doi: 10.1111/j.1574-6968.2010.01995.x. Epub 2010 Apr 21.
3
Second messenger-mediated adjustment of bacterial swimming velocity.
Cell. 2010 Apr 2;141(1):107-16. doi: 10.1016/j.cell.2010.01.018. Epub 2010 Mar 18.
4
Effects of carbon and oxygen limitations and calcium concentrations on biofilm removal processes.
Biotechnol Bioeng. 1991 Jan 5;37(1):17-25. doi: 10.1002/bit.260370105.
5
Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor.
Mol Microbiol. 2008 Jul;69(2):376-89. doi: 10.1111/j.1365-2958.2008.06281.x.
6
Multidrug tolerance of biofilms and persister cells.
Curr Top Microbiol Immunol. 2008;322:107-31. doi: 10.1007/978-3-540-75418-3_6.
7
Innate and induced resistance mechanisms of bacterial biofilms.
Curr Top Microbiol Immunol. 2008;322:85-105. doi: 10.1007/978-3-540-75418-3_5.
8
Role of hyaluronidase in Streptococcus intermedius biofilm.
Microbiology (Reading). 2008 Mar;154(Pt 3):932-938. doi: 10.1099/mic.0.2007/012393-0.
9
PilB and PilT are ATPases acting antagonistically in type IV pilus function in Myxococcus xanthus.
J Bacteriol. 2008 Apr;190(7):2411-21. doi: 10.1128/JB.01793-07. Epub 2008 Jan 25.
10
Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor.
Science. 1988 Jun 3;240(4857):1319-21. doi: 10.1126/science.240.4857.1319.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验